利用IEEE 1588和Blackfin嵌入式處理器實(shí)現(xiàn)設(shè)備時(shí)鐘同步
發(fā)布時(shí)間:2020-01-12 來源:Dr. Jiang Wu 和 Robert Peloquin 責(zé)任編輯:wenwei
【導(dǎo)讀】IEEE 1588標(biāo)準(zhǔn)誕生于2002 年,主要定義網(wǎng)絡(luò)分布式時(shí)鐘的同步協(xié)議。測試與測量、電信和多媒體流處理等許多不同應(yīng)用,都開始首選這種時(shí)鐘同步方法。這種標(biāo)準(zhǔn)化時(shí)鐘同步法成本效益高,支持異構(gòu)系統(tǒng),并可提供納秒級(jí)同步精度。
本文介紹原版 IEEE 1588-2002 標(biāo)準(zhǔn)以及更新版本 IEEE 1588-2008 中的改進(jìn)內(nèi)容。由于IEEE 1588 在一些目標(biāo)應(yīng)用中越來越重要,因此 ADSP-BF5181 Blackfin® 嵌入式處理器中也集成專用硬件來支持IEEE 1588。本文將概要介紹其功能,并通過一個(gè)示例來展示利用ADSP-BF518 處理器解決方案獲得的時(shí)鐘同步性能結(jié)果。
現(xiàn)在幾點(diǎn)了?
大多數(shù)系統(tǒng)都需要利用本振來維護(hù)自己的時(shí)間概念。圖1顯示硬件和軟件如何組合,在系統(tǒng)內(nèi)產(chǎn)生時(shí)間信息
圖1. 本地計(jì)時(shí)
系統(tǒng)內(nèi)的硬件和軟件資源均可使用此時(shí)間信息。對(duì)于硬件,振 蕩器時(shí)鐘會(huì)產(chǎn)生一個(gè)或多個(gè)物理時(shí)鐘信號(hào)(時(shí)鐘輸出),并可 利用這些時(shí)鐘信號(hào)驅(qū)動(dòng)或觸發(fā)系統(tǒng)的其它部分。軟件中維護(hù)的 時(shí)間通常稱為"系統(tǒng)時(shí)間"。系統(tǒng)時(shí)間可以用時(shí)鐘脈沖數(shù)或秒 / 納秒的形式表示。系統(tǒng)軟件利用振蕩器時(shí)鐘脈沖數(shù)及其頻率 信息得出時(shí)間,并提供"應(yīng)用程序編程接口" (API) 函數(shù),軟 件的其它部分可以使用這些函數(shù)檢索并設(shè)置時(shí)間。如果需要絕 對(duì)時(shí)間,則所提供的時(shí)間將與預(yù)定義時(shí)間點(diǎn),即基準(zhǔn)時(shí)間點(diǎn)相 關(guān)聯(lián).
時(shí)鐘同步
許多應(yīng)用要求兩臺(tái)獨(dú)立的設(shè)備以同步方式工作。如果每臺(tái)設(shè)備 僅依靠自己的振蕩器,則各振蕩器的特性與工作條件差異將會(huì) 限制時(shí)鐘同步工作的能力。一些簡單可行的解決方案可以克服 這些限制,包括:
● 所有設(shè)備共用一個(gè)物理振蕩器.這種方法僅對(duì)距離很近的分
● 所有設(shè)備均使用特性幾乎完全相同的振蕩器.由 于很難獲得 幾乎完全一樣的振蕩器,并確保性能不隨時(shí)間飄移,因此這 種方法不可行。更重要的是,各振蕩器的工作條件并不相
● 如果所有設(shè)備均通過一個(gè)通信網(wǎng)絡(luò)(例如以太網(wǎng))互連,則這些設(shè)備可以通過網(wǎng)絡(luò)交換時(shí)間消息,根據(jù)單個(gè)"主"時(shí)鐘 動(dòng)態(tài)調(diào)整各自的時(shí)鐘。利用傳統(tǒng)的時(shí)間同步協(xié)議—— "網(wǎng)絡(luò) 時(shí)間協(xié)議"(NTP),統(tǒng)中的每臺(tái)設(shè)備根據(jù)它從 NTP時(shí)間服 務(wù)器獲取的時(shí)間信息調(diào)整其時(shí)鐘。然而,該協(xié)議只能實(shí)現(xiàn)毫 秒級(jí)同步精度。
IEEE 1588 定義了一個(gè)新協(xié)議,能夠?qū)崿F(xiàn)納秒級(jí)同步精度。下 面討論該標(biāo)準(zhǔn)如何實(shí)現(xiàn)這種水平的時(shí)鐘同步。
IEEE 1588 有何作用
IEEE 1588 標(biāo)準(zhǔn)定義了一種時(shí)間同步協(xié)議,適用于地理位置分 散但通過某種通信技術(shù)(例如以太網(wǎng))互連的設(shè)備。設(shè)備之間 通過交換時(shí)序消息,從而保持相同的絕對(duì)系統(tǒng)時(shí)間(用秒和納 秒表示)。
要實(shí)現(xiàn)此目標(biāo),一個(gè)直觀的方法是將一臺(tái)具有"最佳"(最精 確)時(shí)鐘的設(shè)備指定為"主時(shí)鐘"設(shè) 備,讓它向其它設(shè)備廣播 其時(shí)間。其它設(shè)備將會(huì)調(diào)整各自的時(shí)間,與主時(shí)鐘所發(fā)送的時(shí) 間保持一致。不過,這種解決方案也有幾點(diǎn)不足:
1. 主時(shí)鐘設(shè)備無法以極短的間隔廣播時(shí)間,因此"從"時(shí)鐘設(shè)備必須使用自己獨(dú)立的"低劣"振蕩器,在主時(shí)鐘設(shè)備
2. 廣播路徑難免存在延遲,延遲幅度取決于通信技術(shù),例如物理信號(hào)沿導(dǎo)線從一臺(tái)設(shè)備傳輸至另一臺(tái)設(shè)備所需的時(shí) 間。這種延遲會(huì)進(jìn)一步擴(kuò)大主時(shí)鐘與各從時(shí)鐘之間的失
3. 主時(shí)鐘設(shè)備與各從時(shí)鐘設(shè)備之間的廣播路徑存在差異,這會(huì)進(jìn)一步降低各從時(shí)鐘設(shè)備之間的同步精度。
IEEE 1588 要求通過測量路徑延遲,解決第二個(gè)和第三個(gè)問 題。它還要求待調(diào)整的從時(shí)鐘與主時(shí)鐘保持步調(diào)一致,從而減 輕第一個(gè)問題。如果可能,使用更小的廣播間隔和更高質(zhì)量的 振蕩器,可以進(jìn)一步減輕第一個(gè)問題
IEEE 1588 如何測量通信延遲
IEEE 1588-20022 定義了四種消息 Sync、 Followup、 DelayReq和 DelayResp,用來測量前向(主時(shí)鐘至從時(shí)鐘)和后向(從 時(shí)鐘至主時(shí)鐘)路徑的通信延遲。更新版本IEEE 1588-2008,3 還提供其它機(jī)制,新增三種消息 PdelayReq、PdelayResp和PdelayRespFollowup,來測量"點(diǎn)對(duì)點(diǎn)延遲"。
這些消息中,Sync、DelayReq、PdelayReq 和PdelayResp 是所謂"事件"消息,在離開和到達(dá)一臺(tái)設(shè)備時(shí)必須加上"時(shí)間 戳"(記錄本地時(shí)間)。給分組加上時(shí)間戳的方法有兩種
1. 消息由軟件處理時(shí)出現(xiàn)軟件時(shí)間戳。通常出現(xiàn)在消息的接收/發(fā)送"中斷服務(wù)程序"(ISR)中,該時(shí)間戳為系統(tǒng)時(shí)間的當(dāng)前值。
2. 消息實(shí)際到達(dá)或離開設(shè)備時(shí)出現(xiàn)硬件時(shí)間戳。該時(shí)間戳操作由硬件執(zhí)行,硬件會(huì)維護(hù)自己的連續(xù)時(shí)間信息。
兩種時(shí)間戳方法均為IEEE 1588 所接受,但硬件時(shí)間戳的精度明顯更高,如下文所述。
主時(shí)鐘設(shè)備到從時(shí)鐘設(shè)備的延遲
消息Sync 和Followup 由主時(shí)鐘設(shè)備發(fā)送,從時(shí)鐘設(shè)備負(fù)責(zé)接 收這些消息,并計(jì)算主時(shí)鐘設(shè)備到從時(shí)鐘設(shè)備的通信路徑延遲.
圖2 中,在時(shí)間點(diǎn) Tm1,主時(shí)鐘設(shè)備軟件讀取當(dāng)前本地系統(tǒng) 時(shí)間(Tm1,軟件時(shí)間戳),將其插入 Sync 消息中,并送出 該消息。該消息在稍 后的時(shí)間點(diǎn) Tm1'''' 離開主時(shí)鐘設(shè)備,該時(shí) 間點(diǎn)為硬件時(shí)間戳。該消息在時(shí)間點(diǎn) Ts1'''' (從時(shí)鐘設(shè)備本地時(shí)間)到達(dá)從時(shí)鐘硬件,從時(shí)鐘設(shè)備軟件在稍后的時(shí)間點(diǎn) Ts1 收到該消息。該軟件將讀取硬件時(shí)間戳以獲得 Ts1''''。如果沒有通 信延遲,Ts1'''' 應(yīng)等于(Tm1'''' + Tms),其中 Tms 為主時(shí)鐘與從時(shí) 鐘之間的時(shí)間差。該協(xié)議的最終目標(biāo)是補(bǔ)償此時(shí)間差.
圖 2. 測量主時(shí)鐘設(shè)備與從時(shí)鐘設(shè)備之間的通信延遲
發(fā)送 Sync 消息之后,主時(shí)鐘設(shè)備軟件通過時(shí)間戳單元讀取 Sync 消息的離開時(shí)間 Tm1'''' ,將其插入 Followup 消息中,然后 在時(shí)間點(diǎn) Tm2 發(fā)送該消息。從時(shí)鐘設(shè)備軟件在時(shí)間點(diǎn) Ts2 收 到此消息。此時(shí),從時(shí)鐘設(shè)備軟件有兩個(gè)時(shí)間: Ts1'''' ( Sync 到 達(dá)時(shí)間)和 Tm1'''' ( Sync 離開時(shí)間)。主從路徑延遲 Tmsd 由 公式 1 確定。
(1)
從時(shí)鐘設(shè)備到主時(shí)鐘設(shè)備的延遲ce
從時(shí)鐘設(shè)備發(fā)送 DelayReq 消息,主時(shí)鐘設(shè)備予以響應(yīng)發(fā)送 DelayResp 消息。利用這些消息,從時(shí)鐘設(shè)備可以計(jì)算從時(shí)鐘 設(shè)備到主時(shí)鐘設(shè)備的通信路徑延遲.
在時(shí)間點(diǎn) Ts3 (圖 3 ),從時(shí)鐘設(shè)備軟件讀取當(dāng)前本地系統(tǒng)時(shí) 間 (T s3) ,將其插入 DelayReq 消息中,并送出該消息。發(fā)送該 消息之后,從時(shí)鐘設(shè)備軟件讀取時(shí)間戳以獲取消息離開時(shí)間 Ts3'''' ,并等待主時(shí)鐘設(shè)備的響應(yīng)。
圖 3. 測量從主通信延遲
DelayReq 消息在稍后的時(shí)間點(diǎn) Tm3'''' 到達(dá)主時(shí)鐘設(shè)備,由主時(shí) 鐘設(shè)備軟件在時(shí)間點(diǎn) Tm3 處理。然后,該軟件讀取時(shí)間戳以 獲取到達(dá)時(shí)間 Tm3'''' ,將其插入 DelayResp 消息中,并在時(shí)間 點(diǎn) Tm4 發(fā)送至從時(shí)鐘設(shè)備。當(dāng)從時(shí)鐘設(shè)備軟件在時(shí)間點(diǎn) Ts4 收到 DelayResp 消息時(shí),它可以提取時(shí)間 Tm3'''' ,并通過公式 2 計(jì)算從主通信延遲 Tsmd 。
(2)
公式 1 和公式 2 中均有一個(gè)未知變量,即主從時(shí)間差 Tms ,因 此無法單獨(dú)求得 Tmsd 或 Tsmd 。但是,如果我們合理地假設(shè) 通信路徑是對(duì)稱的,即
(3)
——這是IEEE 1588 成立的關(guān)鍵假設(shè)——那么,將公式1 與公式 2 相加可以得出
(4)
由于從時(shí)鐘設(shè)備尋求與主時(shí)鐘設(shè)備同步,因此所有這些計(jì)算 均由這些設(shè)備執(zhí)行。從時(shí)鐘設(shè)備從主時(shí)鐘設(shè)備的 Followup 消 息獲得 Tm1'''' ,從其 Rx (接收)時(shí)間戳獲得 Ts1'''' ,從其 Tx (發(fā) 送)時(shí)間戳獲得 Ts3'''' ,并通過主時(shí)鐘設(shè)備的 DelayResp 消息獲 得 Tm3''''.
如何計(jì)算從時(shí)鐘與主時(shí)鐘的時(shí)間差
一旦獲得通信路徑延遲 Td ,便可利用公式 1 或公式 2 輕松計(jì) 算從時(shí)鐘與主時(shí)鐘的時(shí)間差,如公式 5 和公式 6 所示
(5)
(6)
如何調(diào)整從時(shí)鐘設(shè)備的時(shí)間
知道與主時(shí)鐘的時(shí)間差之后,各從時(shí)鐘需要調(diào)整自己的本地時(shí) 間,與主時(shí)鐘保持一致。該任務(wù)包括兩方面。第一,從時(shí)鐘設(shè) 備需要加上時(shí)間差以調(diào)整絕對(duì)時(shí)間,使其時(shí)間在此刻與主時(shí)鐘 時(shí)間完全一致。第二,從時(shí)鐘設(shè)備需要調(diào)整各自的時(shí)鐘頻率, 與主時(shí)鐘的頻率保持一致。我們不能單靠絕對(duì)時(shí)間,因?yàn)闀r(shí)間 差僅在一定期間內(nèi)應(yīng)用,可能是正值,也可能是負(fù)值;調(diào)整的 結(jié)果是從時(shí)鐘時(shí)間向前跳躍或向后倒退。因此,在實(shí)際操作 中,調(diào)整分兩步執(zhí)行:
1. 如果時(shí)間差過大,例如
2. 如果時(shí)間差較小,則使從時(shí)鐘的頻率改變某一百分比.
一般而言,該系統(tǒng)會(huì)變成一個(gè)控制環(huán)路,其中主時(shí)鐘時(shí)間是參 考命令,而從時(shí)鐘時(shí)間是跟蹤主時(shí)鐘時(shí)間的輸出,二者之差驅(qū) 動(dòng)可調(diào)整時(shí)鐘??梢允褂?PID 控制來實(shí)現(xiàn)特定跟蹤性能,這 是許多 IEEE 1588 實(shí)施方案常用的方法。圖 4 顯示了這種控制環(huán)路.
圖 4. IEEE 1588 控制環(huán)路.
點(diǎn)對(duì)點(diǎn)延遲
修訂版 IEEE 1588-2008 引入了新的機(jī)制來測量路徑延遲,稱 為"點(diǎn)對(duì)點(diǎn)" (P2P) 延遲。與之相比,上文討論的主從機(jī)制則 是"端對(duì)端" (E2E) 延遲。在支持 IEEE 1588-2008 的網(wǎng)絡(luò)中, 主時(shí)鐘設(shè)備可以與從時(shí)鐘設(shè)備直接相連,或者隔幾個(gè)中繼站 (級(jí))相連。 E2E 延遲實(shí)際上是主時(shí)鐘設(shè)備到從時(shí)鐘設(shè)備的 "總"延遲,包括其間的所有中繼站在內(nèi)。但是, P2P 延遲則 僅限于兩個(gè)直接相連的設(shè)備。通信路徑的總延遲等于所有中繼 站的 P2P 延遲之和。從確保路徑對(duì)稱性的角度看, P2P 機(jī)制可 提供更高的精度.
如上文所述, IEEE 1588-2008 新增了 PdelayReq 、 PdelayResp 和 PdelayRespFollowup 三種消息來測量 P2P 延遲。這些消息 的工作方式與上文所述方式相似,詳情請(qǐng)看參考文獻(xiàn)3。
影響同步性能的因素
精心 設(shè)計(jì)的 IEEE 1588 設(shè)備能夠?qū)崿F(xiàn)高度精確的時(shí)鐘同步,但 也必須了解直接影響同步性能的主要因素,其中包括:
1. 路徑延遲: 如上文所述, IEEE 1588 的路徑延遲測量假設(shè)通 信路徑延遲是對(duì)稱的,即前向路徑的傳輸延遲與后向傳輸 延遲相同。此外,在延遲測量期間,延遲不應(yīng)變化。測量 期間延遲變化會(huì)導(dǎo)致不對(duì)稱和延遲抖動(dòng),這將直接影響同 步精度。雖然無法在 IEEE 1588 設(shè)備的邊界之外控制延遲對(duì) 稱性和抖動(dòng),但如果測量基于硬件時(shí)間戳,則可在設(shè)備內(nèi) 改善路徑對(duì)稱性和抖動(dòng)。由于中斷延時(shí)、環(huán)境切換和線程 調(diào)度,軟件時(shí)間戳?xí)?dǎo)致明顯的抖動(dòng),而硬件時(shí)間戳則不
2. 時(shí)鐘的漂移和抖動(dòng)特性:: 主時(shí)鐘的頻率和相位代表跟蹤控 制系統(tǒng)的輸入,從時(shí)鐘則是控制對(duì)象。主時(shí)鐘的任何時(shí)變 行為都會(huì)擾動(dòng)該控制系統(tǒng),導(dǎo)致穩(wěn)態(tài)和瞬態(tài)兩種誤差。因
3. 控制法則: 從時(shí)鐘調(diào)整如何校正從時(shí)鐘設(shè)備的時(shí)間誤 差取 決于控制方法??刂品▌t參數(shù)包括建立時(shí)間、過沖和穩(wěn)態(tài)
4. 時(shí)鐘分辨率: 如圖 1 所示,本地時(shí)間的分辨率由時(shí)鐘頻率 決定;最小時(shí)間增量為時(shí)鐘信號(hào)的一個(gè)周期。 IEEE 1588- 2002 支持 1 ns 的時(shí)間分辨率, IEEE 1588-2008 則支持 2 -16 ns 的時(shí)間分辨率。 2 16 (!) GHz (甚至 1 GHz )的時(shí)鐘是不 現(xiàn)實(shí)的。本地時(shí)鐘的量化會(huì)影響本地時(shí)間測量和控制的精
5. Sync 消息的發(fā)送周期: 從時(shí)鐘的更新頻率最終會(huì)影響同步 精度。因?yàn)闀r(shí)間誤差是從時(shí)鐘頻率誤差的整體累積值,所 以發(fā)送周期越長,下一個(gè) Sync 所觀察到的時(shí)間誤差一般會(huì)
6. 延遲測量的頻率: 以預(yù)期相鄰采樣點(diǎn)之間延遲沒有明顯變 化的間隔時(shí)間,定期執(zhí)行延遲測量。如果 IEEE 1588 網(wǎng)絡(luò) 的延遲變化較大,則增加延遲測量頻率可以改善時(shí)鐘同步 性能。
哪個(gè)是主時(shí)鐘?
在考慮如何精確確 定主時(shí)鐘設(shè)備與從時(shí)鐘設(shè)備之間的時(shí)間差之 后,下一個(gè)相關(guān)問題是:在成百上千臺(tái)互連設(shè)備中,如何確定 哪一臺(tái)設(shè)備充當(dāng)主時(shí)鐘。
IEEE 1588 定義了一種稱為"最佳主時(shí)鐘" (BMC) 算法的方 法,用于選擇主時(shí)鐘設(shè)備。這種方法要求 IEEE 1588 網(wǎng)絡(luò)的每 臺(tái)設(shè)備均提供一個(gè)數(shù)據(jù)集,描述其本地時(shí)鐘的性質(zhì)、質(zhì)量、穩(wěn) 定性、唯一識(shí)別符和首選設(shè)置。當(dāng)一臺(tái)設(shè)備加入 IEEE 1588 網(wǎng) 絡(luò)時(shí),它會(huì)廣播其時(shí)鐘的數(shù)據(jù)集,并接收所有其它設(shè)備的數(shù)據(jù) 集。利用所有參與設(shè)備的數(shù)據(jù)集,每臺(tái)設(shè)備均運(yùn)行同一 BMC 算法,以確定主時(shí)鐘及其自己的未來狀態(tài)(主時(shí)鐘或從時(shí) 鐘)。由于所有設(shè)備均采用同樣的數(shù)據(jù)獨(dú)立執(zhí)行同一算法,因 此結(jié)論將會(huì)相同,設(shè)備之間不需要進(jìn)行任何協(xié)商。有關(guān) BMC 算法的更多詳細(xì)信息,請(qǐng)看參考文獻(xiàn) 2 和 3 。
ADSP -BF51 8 處理器支持 IEEE 1588
ADI 公司 Black fi n DSP 系列最近新增一款產(chǎn)品: ADSP-BF518 處理器。像前款產(chǎn)品 ADSP-BF537,4 該處理器內(nèi)置"以 太網(wǎng)媒體訪問控制器" (EMAC) 模塊。它還具有 TSYNC 模 塊,進(jìn)一步擴(kuò)展了支持 IEEE 1588 標(biāo)準(zhǔn) EMAC 功能的能力; 還提供其它額外特性,可支持以太網(wǎng)的各種 IEEE 1588 應(yīng)用。 圖 5 顯示了 TSYNC 模塊的框圖。 ADSP-BF51x Blackfin 處理 器硬件參考提供了更多信息5
圖 5. ADSP-BF518 處理器 TSYNC 模塊的框圖。
分組檢測
ADSP-BF518 處理器可以檢測 IEEE 1588 的所有事件消息,包 括送入和送出的分組,并為其提供硬件時(shí)間戳。因?yàn)槭录?時(shí)間戳的精度及其提取位置會(huì)影響路徑延遲的對(duì)稱性和穩(wěn)定 性要求,所以 IEEE 1588 系統(tǒng)的精度在很大程度上取決于這二 者。 ADSP-BF518 的 TSYNC 模塊持續(xù)監(jiān)控 MAC 控制器與以 太網(wǎng)"物理接口收發(fā)器" (PHY) 之間的硬件接口,即"媒體獨(dú) 立接口" (MII) ,并且只要檢測到事件消息,就會(huì)產(chǎn)生硬件時(shí) 間戳,這一功能可提高 ADSP-BF518 的同步精度。
事件消息檢測功能是可編程的,基本配置有兩種:支持 IEEE 1588-2002 (默認(rèn)狀態(tài))或支持 IEEE 1588-2008 。此外,這種 可編程能力還支持將來版本的 IEEE 1588 ,以及其它要求時(shí)間 戳的一般協(xié)議,包括配置為給進(jìn)出處 理器的每個(gè)以太網(wǎng)分組加 上時(shí)間戳。
靈活的時(shí)鐘源
本地時(shí)鐘的屬性對(duì)于 IEEE 1588 系統(tǒng)的性能很重要。為了滿足 各種不同應(yīng)用的要求, ADSP-BF518 處理器可提供三種本地時(shí) 鐘源選項(xiàng):系統(tǒng)時(shí)鐘、外部時(shí)鐘或以太網(wǎng)時(shí)鐘。如果應(yīng)用具有 特定時(shí)鐘要求,則可以選擇"外部時(shí)鐘",并提供定制時(shí)鐘 源。如果主時(shí)鐘設(shè)備與從時(shí)鐘設(shè)備"背靠背"連接,由于"以 太網(wǎng)時(shí)鐘"來自以太網(wǎng)線路,而且兩臺(tái)設(shè)備采用同一時(shí)鐘工 作,因此該時(shí)鐘選項(xiàng)可以提供良好的精度。一般應(yīng)用可以選擇 處理器的"系統(tǒng)時(shí)鐘"作為時(shí)鐘源。
所選源時(shí)鐘也由 TSYNC 模塊驅(qū)動(dòng),通過特定引腳 Clockout 作 為處理器輸出,系統(tǒng)的其它部分可利用該輸出提供本地時(shí)間信息。
PPS 輸出
"每秒脈沖" (PPS) 信號(hào)是時(shí)間信息的物理表示。它名義上是 一個(gè) 1-Hz 信號(hào),在每個(gè) 1 秒轉(zhuǎn)換時(shí)間發(fā)出一個(gè)脈沖。它可用 來控制本地設(shè)備,或者在發(fā)生網(wǎng)絡(luò)故障時(shí)提供輔助時(shí)間通道。 它也可以 用于測試。兩臺(tái)設(shè)備的 PPS 信號(hào)之間的相位差是二 者時(shí)間偏移的物理量度
ADSP-BF518 處理器提供靈活的 PPS 輸出。它利用可編程"開 始時(shí)間" (PPS_ST) 和周期 (PPS_P) 產(chǎn)生一個(gè)在時(shí)間 (PPS_ST + n × PPS_P) 發(fā)出脈沖的信號(hào),其中 n = 1, 2, 3 ...。基本用法是 將 PPS_P 設(shè)置為 1 秒,并將 PPS_ST 設(shè)置為用秒數(shù)表示的將來 任一時(shí)刻,從而產(chǎn)生 PPS 信號(hào)。參考基本用法,可以利用這 種 PPS 輸出功能產(chǎn)生具有可編程頻率和開始時(shí)間的周期性信號(hào)。
輔助快照
一些應(yīng)用可能需要按照標(biāo)志信號(hào)切換指示,給某一事件加上時(shí) 間戳。 ADSP-BF518 的 TSYNC 模塊通過輔助"快照" 功能, 使用一個(gè)專用引腳來接收外部標(biāo)志,以便實(shí)現(xiàn)這種請(qǐng)求。切換 標(biāo)志將觸發(fā)該模塊捕捉時(shí)間戳寄存器中的當(dāng)前本地時(shí)間,供軟 件訪問。.
報(bào)警
如果應(yīng)用需在特定時(shí)間執(zhí)行一項(xiàng)任務(wù),則可以用 TSYNC 模塊 的"報(bào)警"功能。這項(xiàng)功能可以設(shè)置本地絕對(duì)時(shí)間,到達(dá)該時(shí) 間時(shí),就會(huì)觸發(fā)處理器中斷。然后,軟件便可利用中斷執(zhí)行任 務(wù)。
可調(diào)時(shí)鐘
TSYNC 模塊的可調(diào)時(shí)鐘是一種"基于加數(shù)"的時(shí)鐘。如圖 6 所示,它獲得一個(gè)固定輸入時(shí)鐘信號(hào),并輸出該輸入的"盜取 脈沖"版本信號(hào):對(duì)于每個(gè)輸入時(shí)鐘,"加數(shù)"的值增加到累 加器中,并且每次累加器溢出時(shí),進(jìn)位位就會(huì)驅(qū)動(dòng)"本地時(shí)間計(jì)數(shù)器",從而產(chǎn)生以脈沖計(jì)數(shù)值表示的本地時(shí)間。更改加數(shù) 可以調(diào)整本地時(shí)鐘的頻率,因?yàn)榧訑?shù)決定累加器溢出的頻率, 從而決定本地時(shí)間計(jì)數(shù)器遞增的頻率。如果輸入時(shí)鐘的頻率為 Fin,且加數(shù)的值為A,則本地時(shí)鐘頻率為:
(7)
圖 6. 基于加數(shù)的可調(diào)時(shí)鐘
采用ADSP-BF518 處理器的 IEEE 1588 實(shí)施方案
ADSP-BF518 處理器上構(gòu)建了一個(gè)完整的 IEEE 1588-2008 兼容系統(tǒng),如圖 7 所示。
圖7. 采用ADSP-BF518 的 IEEE 1588 實(shí)施方案
處理器的 TSYNC 模塊檢測送入和送出的 IEEE 1588 消息, 并通過硬件給事件消息加上時(shí)間戳。由 I X X AT ( I X X AT Automation GmbH) 提供的 IEEE 1588 協(xié)議棧軟件可實(shí)現(xiàn)標(biāo)準(zhǔn) 所要求的消息交換協(xié)議。它利用 TSYNC 驅(qū)動(dòng)程序讀取、寫 入并調(diào)整 TSYNC 時(shí)鐘,并使用 MAC 控制器驅(qū)動(dòng)程序在以太 網(wǎng) MAC 層(開放系統(tǒng)互連模型的第二層)發(fā)送和接收消息。它還可實(shí)現(xiàn) P2P 延遲測量的控制法則和過濾。以太網(wǎng) PHY 選擇具有低抖動(dòng)延遲特性的 National Semiconductor DP838486。為簡明起見,TSYNC 模塊時(shí)鐘源選擇處理器的系統(tǒng)時(shí)鐘 (80 MHz)。
圖 8. ADSP-BF518 上 IEEE 1588 系統(tǒng)的從時(shí)鐘誤差直方圖
圖 8 是兩個(gè)完全相同的 ADSP-BF518 IEEE 1588 系統(tǒng)之間的 測量誤差直方圖,由此可看出該器件的時(shí)鐘同步性能。在 約 1700 秒的時(shí)間內(nèi)共進(jìn)行了 6938 次測量。最終平均誤差為0.015 ns,標(biāo)準(zhǔn)差為 12.96 ns。該測試所用的 Sync 消息間隔為0.25 秒。
結(jié)論
IEEE 1588 標(biāo)準(zhǔn)提供了一種高精度、低成本的分布式時(shí)鐘同步 方法。雖然 IEEE 1588 并未明文要求硬件支持,但硬件輔助 消息檢測和時(shí)間戳對(duì)于實(shí)現(xiàn)極高同步精度至關(guān)重要。 ADSP- BF518 為 IEEE 1588-2002 和 IEEE 1588-2008 提供硬件支 持,包括各種應(yīng)用的支持功能。利用 ADSP-BF518 處理器和 IXXAT IEEE 1588-2008 協(xié)議軟件實(shí)施 IEEE 1588 技術(shù),已證 明可以實(shí)現(xiàn)高精度時(shí)鐘同步。
參考電路
1 ADSP-BF518 數(shù)據(jù)手冊(cè)。 http://www.analog.com/en/products/processors-dsp/blackfin/adsp-bf518.html.
2IEEE Std. 1588-2002. 網(wǎng)絡(luò)測量和控制系統(tǒng)的精密時(shí)鐘同步協(xié) 議 IEEE 標(biāo)準(zhǔn)。 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1048550.
3IEEE Std. 1588-2008. 網(wǎng)絡(luò)測量和控制系統(tǒng)的精密時(shí)鐘同步協(xié) 議 IEEE 標(biāo)準(zhǔn)。http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4579760.
4ADSP-BF537 數(shù)據(jù)手冊(cè)。 http://www.analog.com/en/products/processors-dsp/blackfin/adsp-bf537.html.
5ADSP-BF51x Blackfin 處理器硬件參考,0.1 版(初始版)。 2009 年 1 月。 Analog Devices, Inc.http://www.analog.com/media/en/dsp-documentation/processor-manuals/ADSP-BF51x_hwr_rev1.2.pdf.
6AN-1507 :DP83848 和 DP83849 100Mb 數(shù)據(jù)延時(shí)。 2006. National Semiconductor Corporation. http://www.ti.com/lit/an/snla084b/snla084b.pdf.
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭金奪銀
- 輕松滿足檢測距離,勞易測新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器