不談?dòng)?jì)算,從原理上看LLC的工作過程!
發(fā)布時(shí)間:2020-02-20 責(zé)任編輯:wenwei
【導(dǎo)讀】LLC半橋諧振電路中,根據(jù)這個(gè)諧振電容的不同聯(lián)結(jié)方式,典型LLC諧振電路有兩種連接方式,如下圖1所示。不同之處在于LLC諧振腔的連接,左圖采用單諧振電容(Cr),其輸入電流紋波和電流有效值較高,但布線簡(jiǎn)單,成本相對(duì)較低;右圖采用分體諧振電容(C1, C2),其輸入電流紋波和電流有效值較低,C1和C2上分別只流過一半的有效值電流,且電容量?jī)H為左圖單諧振電容的一半。
LLC技術(shù)已經(jīng)普及了,再不會(huì)就要落后啦!
LLC半橋諧振電路中,根據(jù)這個(gè)諧振電容的不同聯(lián)結(jié)方式,典型LLC諧振電路有兩種連接方式,如下圖1所示。不同之處在于LLC諧振腔的連接,左圖采用單諧振電容(Cr),其輸入電流紋波和電流有效值較高,但布線簡(jiǎn)單,成本相對(duì)較低;右圖采用分體諧振電容(C1, C2),其輸入電流紋波和電流有效值較低,C1和C2上分別只流過一半的有效值電流,且電容量?jī)H為左圖單諧振電容的一半。
LLC半橋諧振電路基本原理
LLC諧振變換的直流特性分為零電壓工作區(qū)和零電流工作區(qū)。這種變換有兩
個(gè)諧振頻率。一個(gè)是Lr 和Cr的諧振點(diǎn),另外一個(gè)諧振點(diǎn)由Lm, Cr以及負(fù)載條
件決定。負(fù)載加重,諧振頻率將會(huì)升高。這兩個(gè)諧振點(diǎn)的計(jì)算公式如下:
考慮到盡可能提高效率,設(shè)計(jì)電路時(shí)需把工作頻率設(shè)定在fr1附近。其中,fr1為Cr,Lr串聯(lián)諧振腔的諧振頻率。當(dāng)輸入電壓下降時(shí),可以通過降低工作頻
率獲得較大的增益。通過選擇合適的諧振參數(shù),可以讓LLC諧振變換無論是負(fù)載變化或是輸入電壓變化都能工作在零電壓工作區(qū)。
總體來說LLC半橋諧振電路的開關(guān)動(dòng)作和半橋電路無異,但是由于諧振腔的加入,LLC半橋諧振電路中的上下MOSFET工作情況大不一樣,它能實(shí)現(xiàn)MOSFET零電壓開通。其工作波形圖如下:
上圖為理想半橋諧振電路工作波形圖;圖中,Vgs1 和 Vgs2 分別是 Q1、Q2
的驅(qū)動(dòng)波形,Ir為諧振電感Lr電感電流波形,Im為變壓器漏感Lm電流波形,Id1和Id2分別是次級(jí)側(cè)輸出整流二級(jí)管波形,Ids1則為Q1導(dǎo)通電流。波形圖根據(jù)不同工作狀態(tài)被分成6個(gè)階段,下面具體分析各個(gè)狀態(tài),LLC諧振電路工作情況:
T0~ T1: Q1關(guān)斷、Q2開通;這個(gè)時(shí)候諧振電感上的電流為負(fù),方向流向Q2。在此階段,變壓器漏感不參加諧振, Cr、Lr組成了諧振頻率,輸出能量來自于Cr和Lr。這個(gè)階段隨著Q2關(guān)斷而結(jié)束。下圖3為L(zhǎng)LC半橋諧振電路在T0~ T1工作階段各個(gè)元器件工作狀態(tài)。
T1~ T2:Q1關(guān)斷、Q2關(guān)斷;此時(shí)為半橋電路死區(qū)時(shí)間,諧振電感上的電流仍為負(fù),諧振電流對(duì)Q1的輸出電容(Coss)進(jìn)行放電,并且對(duì)Q2的輸出電容(Coss)進(jìn)行充電,直到Q2的輸出電容的電壓等于輸入電壓(Vin),為Q1下次導(dǎo)統(tǒng)創(chuàng)造零電壓開通的條件。由于Q1體二級(jí)管此是出于正向偏置,而Q2的體二級(jí)管示反相偏置,兩個(gè)電感上的電流相等。輸出電壓比變壓器二次側(cè)電壓高,D1、D2處于反偏狀態(tài),所以輸出端與變壓器脫離。此階段,Lm和Lr、Cr一同參加諧振。隨著Q1開通,T1~ T2階段結(jié)束。下圖4為L(zhǎng)LC半橋諧振電路在T1~ T2工作階段各個(gè)元器件工作狀態(tài)。
T2~ T3: Q1開通、Q2關(guān)斷(一旦Q1的輸出電容被放電放到零時(shí))。此時(shí)諧振電感上的電流仍舊為負(fù),電流經(jīng)Q1的體二級(jí)管流回輸入端(Vin)。同時(shí),輸出整流二級(jí)管(D1)導(dǎo)通,為輸出端提供能量。變壓器漏感(Lm)在此階段被持續(xù)充電。只有Lr和Cr參與諧振。一旦諧振電感Lr上的電流為零時(shí),T2~ T3階段結(jié)束。下圖5為L(zhǎng)LC半橋諧振電路在T2~ T3工作階段各個(gè)元器件工作狀態(tài)。
T3~ T4:此階段始于諧振電感Lr電流變負(fù)為正,Q1開通、Q2關(guān)斷,和T2~ T3階段一樣。諧振電感電流開始從輸入端經(jīng)Q1流向地。變壓器漏感Lm此時(shí)被此電流充電,因此參加諧振的器件只有Lr 和Cr。輸出端仍由D1來傳輸能量。隨著Q1關(guān)斷,T3~ T4階段結(jié)束。下圖2-6為L(zhǎng)LC半橋諧振電路在T3~ T4工作階段各個(gè)元器件工作狀態(tài)。
T4~ T5: Q1關(guān)斷,Q2關(guān)斷;此時(shí)為半橋電路死區(qū)時(shí)間。此時(shí),諧振電感電流對(duì)Q1的輸出電容Coss進(jìn)行充電,并對(duì)Q2的輸出電容Coss進(jìn)行放電直到Q2上輸出電容電壓為零,導(dǎo)通Q2的體二級(jí)管,為Q2零電壓開通創(chuàng)造條件。在此期間,變壓器二次側(cè)跟T1~ T2階段一樣,脫離初級(jí)側(cè)。在死去時(shí)間,變壓器漏感Lm參與諧振。此階段隨著Q2開通而結(jié)束。下圖7為L(zhǎng)LC半橋諧振電路在T4~ T5工作階段各個(gè)元器件工作狀態(tài)。
T5~ T6: Q1關(guān)斷,Q2導(dǎo)通。由于T4~ T5階段中Q2的輸出電容已經(jīng)被放電至零,因此T5~ T6階段Q2以零電壓開通。能量由諧振電感Lr經(jīng)Q2續(xù)流,輸出端由D2提供能量。此時(shí),Lm不參與Lr和Cr的諧振。此階段隨著諧振電感Lr電流變?yōu)榱愣Y(jié)束,重復(fù)T0~ T1狀態(tài)。下圖8為L(zhǎng)LC半橋諧振電路在T5~ T6工作階段各個(gè)元器件工作狀態(tài)。
由以上工作狀態(tài)可以看出,除了Q1、Q2死區(qū)時(shí)間外,絕大多數(shù)時(shí)間,電路都可以工作在由Lr和Cr構(gòu)成的較高的諧振頻率。這種情況下,變壓器漏電感由于被輸出電壓所鉗位,因此,它會(huì)作為L(zhǎng)r,Cr串聯(lián)諧振腔的負(fù)載形式存在,而不參與整個(gè)諧振過程。由于這個(gè)被動(dòng)負(fù)載,LLC諧振變換輕載穩(wěn)壓可以不再需要很高頻率。而且,由于這個(gè)被動(dòng)Lm負(fù)載,可以保證在任何負(fù)載情況下都能工作在零電壓開關(guān)狀態(tài)下。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索