-
高手教你如何消除Buck轉(zhuǎn)換器中的EMI
消除開關模式電源轉(zhuǎn)換器中的EMI問題會是一個很大的挑戰(zhàn),因為其中含有很多高頻成分。電子元件中的寄生成分常常扮演很重要的角色,所以其表現(xiàn)常常與預期截然不同。本文針對低壓Buck轉(zhuǎn)換器工作中的EMI問題進行分析,然后為這些問題的解決提供很實用的解決方案,非常具有參考價值。
2018-11-19
Buck 轉(zhuǎn)換器 EMI
-
功率電感器嘯叫原因及有效對策
在筆記本電腦、平板電腦、智能手機、電視機以及車載電子設備等運行時,有時會聽到"嘰"的噪音,該現(xiàn)象稱為"嘯叫",導致該現(xiàn)象出現(xiàn)的原因可能在于電容器、電感器等無源元件。本文就DC-DC轉(zhuǎn)換器等電源電路的主要元件——功率電感器的嘯叫原因以及有效對策進行介紹。
2018-11-19
功率電感器 嘯叫
-
詳解功率MOS管的全部參數(shù)
在柵源短接,漏-源額定電壓(VDSS)是指漏-源未發(fā)生雪崩擊穿前所能施加的最大電壓。根據(jù)溫度的不同,實際雪崩擊穿電壓可能低于額定VDSS。關于V(BR)DSS的詳細描述請參見靜電學特性。
2018-11-19
功率MOS管 參數(shù)
-
安森美半導體談自動駕駛,傳感器融合是關鍵
隨著人們對汽車安全性、舒適性、智能性等方面的需求日益提升,電子化、信息化、網(wǎng)絡化和智能化已經(jīng)成為汽車技術的發(fā)展方向。安森美半導體作為全球第七大汽車半導體廠商,第二大非微控制器供應商,第一大汽車圖像傳感器企業(yè)在汽車行業(yè)深耕50余年。歷經(jīng)半個世紀的發(fā)展,安森美半導體在汽車電子領域的...
2018-11-19
安森美半導體 自動駕駛 傳感器融合
-
形象解讀差分信號,它比單端信號強在哪?
一個差分信號是用一個數(shù)值來表示兩個物理量之間的差異。從嚴格意義上來講,所有電壓信號都是差分的,因為一個電壓只能是相對于另一個電壓而言的。在某些系統(tǒng)里,系統(tǒng)''地''被用作電壓基準點。當''地''當作電壓測量基準時,這種信號規(guī)劃被稱之為單端的。我們使用該術語是因為信號是用單個導體上的電...
2018-11-19
差分信號 單端信號 電壓差
-
如何保證TVS管達到最佳電路保護狀態(tài)?
由于瞬態(tài)電壓抑制管TVS具有響應速度快、瞬態(tài)功率大、漏電流低、擊穿點煙偏差下,箝位電壓較易控制、體積小等特點,TVS管已廣泛應用于通信設備、交/直流電源、汽車、家用電器、儀器儀表、新能源等市場。那么,如何才能保證TVS管達到最佳電路保護狀態(tài)呢?
2018-11-16
TVS管 電路保護
-
如何解決高頻開關電源的電磁兼容問題?
本文重點對鐵路信號電源屏使用的1200W(24V/50A)高頻開關電源模塊所存在的電磁騷擾超標問題進行分析,并提出改進措施。高頻開關電源產(chǎn)生的電磁騷擾可分為傳導騷擾和輻射騷擾兩大類。傳導騷擾通過交流電源傳播,頻率低于30MHz;輻射騷擾通過空間傳播,頻率在30~1000MHz。
2018-11-16
高頻開關電源 電磁兼容
- 避開繁瑣!運放差分電容測量簡化指南
- 精準捕捉電流波形:開關電源電感電流測量技術詳解
- 恒壓變壓器選型指南:如何平衡成本與性能?
- 電能控制的中樞神經(jīng):控制變壓器深度解析
- 物聯(lián)網(wǎng)互聯(lián)新選擇:1-Wire總線技術詳解與實戰(zhàn)指南
- 如何利用OTT技術實現(xiàn)模擬前端的80V過壓保護
- 貿(mào)澤電子新推EIT專題:洞察3D打印如何重塑設計與制造
- 聚焦能效與性能,Vishay為AI及電動汽車注入“芯”動力
- 2025中國IC獨角獸論壇滬上啟幕,賦能半導體產(chǎn)業(yè)新未來
- 村田中國亮相 CIIF 2025 —— 以創(chuàng)新元器件賦能新型工業(yè)綠色智能化發(fā)展
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall