你的位置:首頁 > 傳感技術(shù) > 正文

深度解讀各類氣體傳感器

發(fā)布時(shí)間:2018-05-11 責(zé)任編輯:wenwei

【導(dǎo)讀】氣體傳感器是氣體檢測系統(tǒng)的核心,通常安裝在探測頭內(nèi)。從本質(zhì)上講,氣體傳感器是一種將某種氣體體積分?jǐn)?shù)轉(zhuǎn)化成對應(yīng)電信號的轉(zhuǎn)換器。探測頭通過氣體傳感器對氣體樣品進(jìn)行調(diào)理,通常包括濾除雜質(zhì)和干擾氣體、干燥或制冷處理、樣品抽吸,甚至對樣品進(jìn)行化學(xué)處理,以便化學(xué)傳感器進(jìn)行更快速的測量。
 
深度解讀各類氣體傳感器
 
氣體種類繁多,性質(zhì)各異,因此,氣體傳感器種類也很多。按待檢氣體性質(zhì)可分為:用于檢測易燃易爆氣體的傳感器,如氫氣、一氧化碳、瓦斯、汽油揮發(fā)氣等;用于檢測有毒氣體的傳感器,如氯氣、硫化氫、砷烷等;用于檢測工業(yè)過程氣體的傳感器,如煉鋼爐中的氧氣、熱處理爐中的二氧化碳;用于檢測大氣污染的傳感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按氣體傳感器的結(jié)構(gòu)還可分為干式和濕式兩類;按傳感器的輸出可分為電阻式和費(fèi)電阻式兩類;按檢測院里可分為電化學(xué)法、電氣法、光學(xué)法、化學(xué)法幾類。
 
深度解讀各類氣體傳感器
 
半導(dǎo)體氣體傳感器
 
半導(dǎo)體氣體傳感器可分為電阻型和非電阻型(結(jié)型、MOSFET型、電容型)。電阻型氣敏器件的原理是氣體分子引起敏感材料電阻的變化;非電阻型氣敏器件主要有M()s二極管和結(jié)型二極管以及場效應(yīng)管(M()SFET),它利用了敏感氣體會改變MOSFET開啟電壓的原理,其原理結(jié)構(gòu)與ISFET離子敏傳感器件相同。
 
電阻型半導(dǎo)體氣體傳感器
 
作用原理
 
人們已經(jīng)發(fā)現(xiàn)SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在氣敏效應(yīng)。用這些金屬氧化物制成的氣敏薄膜是一種阻抗器件,氣體分子和敏感膜之間能交換離子,發(fā)生還原反應(yīng),引起敏感膜電阻的變化。作為傳感器還要求這種反應(yīng)必須是可逆的,即為了消除氣體分子還必須發(fā)生一次氧化反應(yīng)。傳感器內(nèi)的加熱器有助于氧化反應(yīng)進(jìn)程。SnO2薄膜氣敏器件因具有良好的穩(wěn)定性、能在較低的溫度下工作、檢驗(yàn)氣體種類多、工藝成熟等優(yōu)點(diǎn),是目前的主流產(chǎn)品。此外,F(xiàn)e2O3也是目前廣泛應(yīng)用和研究的材料。除了傳統(tǒng)的SnO、SnO2和Fe2O3三大類外,目前又研究開發(fā)了一批新型材料,包括單一金屬氧化物材料、復(fù)合金屬氧化物材料以及混合金屬氧化物材料。這些新型材料的研究和開發(fā),大大提高了氣體傳感器的特性和應(yīng)用范圍。
 
選擇性是氣體傳感器的關(guān)鍵性能。如SnO2薄膜對多種氣體都敏感,如何提高SnO2氣敏器件的選擇性和靈敏度一直是研究的重點(diǎn)。主要措施有:在基體材料中加入不同的貴金屬或金屬氧化物催化劑,設(shè)置合適的工作溫度,利用過濾設(shè)備或透氣膜外過濾敏感氣體。在SnO2材料內(nèi)摻雜是改善傳感器選擇性的主要方法,添加Pt、Pd、Ir等貴金屬不僅能有效地提高元件的靈敏度和響應(yīng)時(shí)間,而且,催化劑不同,導(dǎo)致不同的吸附傾向,從而改善選擇性。例如在SnO2氣敏材料中摻雜貴金屬Pt、Pd、Au可以提高對CH4的靈敏度,摻雜Ir可降低對CH4的靈敏度,摻雜Pt、Au提高對H2的靈敏度,摻雜Pd降低對H2的靈敏度。
 
工作溫度對傳感器的靈敏度有影響。下圖左圖為SnO2氣敏器件對各種氣體溫度的電阻特性曲線。由圖可見,器件在不同溫度下對各種氣體的靈敏度不同,利用這一特性可以識別氣體種類。
 
深度解讀各類氣體傳感器
 
制備工藝對SnO2的氣敏特性也有很大的影響。如在SnO2中添加ThO2,改變燒結(jié)溫度和加熱溫度就可以產(chǎn)生不同的氣敏效應(yīng)。按質(zhì)量計(jì)算,在SnO2中加入3~5%的ThO2,5%的Sm2.在600℃的H2氣氛中燒結(jié),制成厚膜器件,工作溫度為400℃。則可作為CO檢測器件。上圖右圖是燒結(jié)溫度為600℃時(shí)氣敏器件的特性??煽闯?,工作溫度在170~200℃范圍內(nèi),對H2的靈敏度曲線呈拋物線,而對CO改變工作溫度則影響不大,因此,利用器件這一特性可以檢測H2。而燒結(jié)溫度為400℃制成的器件,工作溫度為200℃時(shí),對H2、CO的靈敏度曲線形狀都近似呈直線,但對CO的靈敏度要高得多,可以制成對CO敏感的氣體傳感器。
 
結(jié)構(gòu)及參數(shù)
 
SnO2電阻型氣敏器件通常采用燒結(jié)工藝。以多孔SnO2陶瓷為基底材料,再添加不同的其他物質(zhì),用制陶工藝燒結(jié)而成,燒結(jié)時(shí)埋入加熱電阻絲和測量電極。此外,也有用蒸發(fā)和濺射等工藝制成的薄膜器件和多層膜器件,這類器件靈敏度高,動態(tài)特性好。還有采用絲網(wǎng)印刷工藝制成的厚膜器件和混合膜器件,這類器件具有集成度高,組裝容易,使用方便,便于批量生產(chǎn)的優(yōu)點(diǎn)。
 
下圖是電阻型氣體傳感器的一種典型結(jié)構(gòu),它主要南SnO2敏感元件、加熱器、電極引線、底座及不銹鋼網(wǎng)罩組成。這種傳感器結(jié)構(gòu)簡單,使用方便,可以檢測還原性氣體、可燃性氣體、蒸氣等。
 
深度解讀各類氣體傳感器
 
電阻型氣體傳感器的主要特性參數(shù)有:
 
1、固有電阻R0和工作電阻Rs
 
固有電阻Ro又稱正常電阻,表示氣體傳感器在正常空氣條件下的阻值。工作電阻Rs表示氣體傳感器在一定濃度被測氣體中的阻值。
 
2、靈敏度S
 
通常用S=Rs/R0表示,有時(shí)也用兩種不同濃度C1、C2)檢測氣體中元件阻值之比來表示:S=Rs(C2)/R0(C1)。
 
3、響應(yīng)時(shí)間T1
 
反映傳感器的動態(tài)特性,定義為傳感器阻值從接觸一定濃度的氣體起到該濃度下的穩(wěn)定值所需時(shí)間。也常用達(dá)到該濃度下電阻值變化率的63%時(shí)的時(shí)問來表示。
 
4、恢復(fù)時(shí)問T2
 
又稱脫附時(shí)間。反映傳感器的動態(tài)特性,定義為傳感器從脫離檢測氣體起,直到傳感器電阻值恢復(fù)至正常空氣條件下的阻值,這段時(shí)間稱為恢復(fù)時(shí)間。
 
5、加熱電阻RH和加熱功率PH
 
RH為傳感器提供工作溫度的電熱絲阻值,PH為保持正常工作溫度所需要的加熱功率。
 
電阻型氣體傳感器具有成本低廉、制造簡單、靈敏度高、響應(yīng)速度快、壽命長、對濕度敏感低和電路簡單等優(yōu)點(diǎn)。不足之處是必須工作于高溫下,對氣體的選擇性較差,元件參數(shù)分散,穩(wěn)定性不夠理想,功率要求高,當(dāng)探測氣體中混有硫化物時(shí),容易中毒。
 
非電阻型半導(dǎo)體氣體傳感器
 
非電阻型也是一類較為常見的半導(dǎo)體氣敏器件,這類器件使用方便,無需設(shè)置工作溫度,易于集成化,得到了廣泛應(yīng)用。主要有結(jié)型和MOSFET型兩種。
 
結(jié)型氣敏器件
 
結(jié)型氣敏傳感器件又稱氣敏二極管,這類氣敏器件是利用氣體改變二極管的整流特性來工作的。其結(jié)構(gòu)如下圖左圖所示。它的原理是:貴金屬Pd對氫氣具有選擇性,它與半導(dǎo)體接觸形成接觸勢壘。當(dāng)二極管加正向偏壓時(shí),從半導(dǎo)體流向金屬的電子將增加,因此正向是導(dǎo)通的。當(dāng)加負(fù)向偏壓時(shí),載流子基本沒有變化,這是肖特基二極管的整流特性。在檢測氣氛中,由于對氫氣的吸附作用,貴金屬的功函數(shù)改變,接觸勢壘減弱.導(dǎo)致載流子增多,正向電流增加,二極管的整流特性曲線會發(fā)生左移。下圖右圖為Pd—TiO2氣敏二極管在不同濃度H2的空氣中的特性曲線。因此,通過測量二極管的正向電流可以檢測氫氣濃度。
 
深度解讀各類氣體傳感器
 
MOSFET型氣敏器件
 
氣敏二極管的特性曲線左移可以看作二極管導(dǎo)通電壓發(fā)生改變,這一特性如果發(fā)生在場效應(yīng)管的柵極,將使場效應(yīng)管的閾值電壓UT改變。利用這一原理可以制成MOSFET型氣敏器件。
 
氫氣敏MOSFET是一種最典型的氣敏器件,它用金屬鈀(Pd)制成鈀柵。在含有氫氣的氣氛中,由于鈀的催化作用,氫氣分子分解成氫原子擴(kuò)散到鈀與二氧化硅的界面,最終導(dǎo)致MOSFET的閾值電壓UT發(fā)生變化。使用時(shí)常將柵漏短接,可以保證MOSFET工作在飽和區(qū),此時(shí)的漏極電流ID=β(UGS—UT)2,利用這一電路可以測出氫氣的濃度。
 
氫氣敏MOSFET的特點(diǎn)有:
 
1、靈敏度
 
當(dāng)氫氣濃度較低時(shí),氫氣敏MOSFET靈敏度很高,1ppm氫氣濃度變化,△UT的值可達(dá)到10mV,當(dāng)氫氣濃度較高時(shí),傳感器的靈敏度會降低。
 
2、對氣體選擇性
 
鈀原子間的“空隙”恰好能讓氫原子通過,因此,鈀柵只允許氫氣通過,有很好的選擇性。
 
3、響應(yīng)時(shí)間
 
這種器件的響應(yīng)時(shí)間受溫度、氫氣濃度的影響,一般溫度越高,氫氣濃度越高,響應(yīng)越快,常溫下的響應(yīng)時(shí)間為幾十秒。
 
4、穩(wěn)定性
 
實(shí)際應(yīng)用中,存在UT隨時(shí)間漂移的特性,為此,采用在HCl氣氛中生長一層SiO2絕緣層,可以顯著改善UT的漂移。
 
除氫氣外,其他氣體不能通過鈀柵,制作其他氣體的Pd—MOSFET氣敏傳感器要采用一定措施,如制作CO敏MOSFET時(shí)要在鈀柵上制作約20nm的小孔,就可以允許CO氣體通過。另外,由于Pd—MOSFET對氫氣有較高的靈敏度,而對CO的靈敏度卻較低,為此可在鈀柵上蒸發(fā)一層厚約20nm的鋁作保護(hù)層,阻止氫氣通過。鈀對氨氣分解反應(yīng)的催化作用較弱,為此,要先在SiO2絕緣層上沉淀一層活性金屬,如Pt、Ir、La等。再制作鈀柵,可制成氨氣敏MOSFET。
 
固體電解質(zhì)氣體傳感器
 
固體電解質(zhì)是一種具有與電解質(zhì)水溶液相同的離子導(dǎo)電特性的固態(tài)物質(zhì),當(dāng)用作氣體傳感器時(shí),它是一種電池。它無需使氣體經(jīng)過透氣膜溶于電解液中,可以避免溶液蒸發(fā)和電極消耗等問題。由于這種傳感器電導(dǎo)率高,靈敏度和選擇性好,幾乎在石化、環(huán)保、礦業(yè)、食品等各個(gè)領(lǐng)域都得到了廣泛的應(yīng)用,其重要性僅次子金屬—氧化物一半導(dǎo)體氣體傳感器。
 
固體電解質(zhì)氧氣傳感器原理
 
同體電解質(zhì)在高溫下才會有明顯的導(dǎo)電性。氧化鋯(ZrO2)是典型的氣體傳感器的材料。純正的氧化鋯在常溫下是單斜晶結(jié)構(gòu),當(dāng)溫度升到1000℃左右時(shí)就會發(fā)生同質(zhì)異晶轉(zhuǎn)變,由單斜晶結(jié)構(gòu)變?yōu)槎嗑ЫY(jié)構(gòu),并伴隨體積收縮和吸熱反應(yīng),因此是不穩(wěn)定結(jié)構(gòu)。在ZrO2中摻入穩(wěn)定劑如:堿土氧化鈣CaO或稀土氧化釔Y2O3,使其成為穩(wěn)定的熒石立方晶體,穩(wěn)定程度與穩(wěn)定劑的濃度有關(guān)。ZrO2加入穩(wěn)定劑后在l800℃氣氛下燒結(jié),其中一部分鋯離子就會被鈣離子替代,生成(ZrO·CaO)。由于Ca2+是正二價(jià)離子,Zr4+是正四價(jià)離子,為繼續(xù)保持電中性,會在晶體內(nèi)產(chǎn)生氧離子O2-空穴,這是(ZrO·CaO)在高溫下傳遞氧離子的原因,結(jié)果是(ZrO·CaO)在300~800℃成為氧離子的導(dǎo)體。但要真正能夠傳遞氧離子還必須在固體電解質(zhì)兩邊有不同的氧分壓(氧位差),形成所渭的濃差電池。其結(jié)構(gòu)原理如圖所示,兩邊是多孔的貴金屬電極,與中間致密的ZrO·CaO材料制成夾層結(jié)構(gòu)。
 
深度解讀各類氣體傳感器
 
設(shè)電極兩邊的氧分壓分別為PO2(1)、PO2(2),在兩電極發(fā)生如下反應(yīng):
 
(+)極:PO2(2),2O2-→O2+4e
 
(-)極:PO1(1),O2+4e→2O2-
 
上述反應(yīng)的電動勢用能斯特方程表示:
 
深度解讀各類氣體傳感器
 
可見,在一定溫度下,固定PO2(1),有上式可求出傳感器(+)極待測氧氣的濃度。
 
固定PO2(1)實(shí)際上是(-)極形成一個(gè)電位固定的電極,即參比電極,有氣體參比電極和共存相參比電極兩種。氣體參比電極可以是空氣或其他混合氣體,如:H2一H2O,CO一CO2也能形成固定的PO2(1)。共存相參比電極是指金屬-金屬氧化物、低價(jià)金屬氧化物-高價(jià)金屬氧化物的混合粉末(固相),這些混合物與氧氣(氣相)混合發(fā)生氧化反應(yīng)能形成同定的氧壓,因此也能作為參比電極。
 
除了測氧外,應(yīng)用β一Al2O3、碳酸鹽、NASICON等固體電解質(zhì)傳感器,還可用來測CO、SO2、NH4等氣體。近年來還出現(xiàn)了銻酸、La3F等可在低溫下使用的氣體傳感器,并可用于檢測正離子。
 
紅外氣體傳感器
 
作用原理
 
由不同原子構(gòu)成的分子會有獨(dú)特的振動、轉(zhuǎn)動頻率,當(dāng)其受到相同頻率的紅外線照射時(shí),就會發(fā)生紅外吸收,從而引起紅外光強(qiáng)的變化,通過測量紅外線強(qiáng)度的變化就可以測得氣體濃度;需要說明的是振動、轉(zhuǎn)動是兩種不同的運(yùn)動形態(tài),這兩種運(yùn)動形態(tài)會對應(yīng)不同的紅外吸收峰,振動和轉(zhuǎn)動本身也有多樣性;因此一般情況下一種氣體分子會有多個(gè)紅外吸收峰;根據(jù)單一的紅外吸收峰位置只能判定氣體分子中有什么基團(tuán),精確判定氣體種類需要看氣體在中紅外區(qū)所有的吸收峰位置即氣體的紅外吸收指紋。但在已知環(huán)境條件下,根據(jù)單一紅外吸收峰的位置可以大致判定氣體的種類。由于在零下273攝氏度即絕對零度以上的一切物質(zhì)都會產(chǎn)生紅外幅射,紅外幅射與溫度正相關(guān),因此,同催化元件一樣,為消除環(huán)境溫度變化引起的紅外幅射的變化,紅外氣體傳感器中會由一對紅外探測器構(gòu)成。
 
一個(gè)完整的紅外氣體傳感器由紅外光源、光學(xué)腔體、紅外探測器和信號調(diào)理電路構(gòu)成。
 
深度解讀各類氣體傳感器
 
為什么紅外氣體傳感器不能測量氧氣、氫氣、氮?dú)獾扔上嗤訕?gòu)成的氣體分子?
 
月亮和地球、地球和太陽靠萬有引力連接,分子內(nèi)部原子間靠化學(xué)鍵連接。如果二者是理想球體而且沒有其它萬有引力干擾則地球軌道將是圓的,實(shí)際上上面兩個(gè)條件都不成立,因此其軌道是橢圓的,也就是地球和太陽之間的距離不停地在短半徑和長半徑之間轉(zhuǎn)換,即振動,只是振動周期長達(dá)一年,在這個(gè)過程中,地球處于短半徑點(diǎn)和長半徑點(diǎn)時(shí),它和太陽之間的引力是不同的,即能量級別不同。在分子內(nèi)部原子間靠化學(xué)鍵連接,原子間的空間距離、角度、方向由于電子分布的不均衡而不停發(fā)生變化,即振動、轉(zhuǎn)動,而且不同的分子會有獨(dú)特的振動、轉(zhuǎn)動頻率,當(dāng)遇到相同頻率的紅外線照射時(shí)會產(chǎn)生諧振、原子間距離和電子分布發(fā)生變化即偶極距發(fā)生變化,紅外吸收就是這樣產(chǎn)生的(紫外吸收同理)。
 
以上內(nèi)容中包含紅外吸收的兩個(gè)基本條件:諧振、偶極距變化。這兩個(gè)條件同時(shí)滿足才能產(chǎn)生紅外吸收。
 
氧氣、氫氣、氮?dú)獾扔赏环N原子構(gòu)成的分子為什么沒有紅外吸收峰:兩個(gè)基本條件一是氣體分子振動頻率與照射的紅外線頻率相同,二是偶極距變化。不難理解,第一個(gè)條件容易滿足,第二個(gè)條件無可能性。
 
相同原子構(gòu)成的分子正負(fù)電荷中心完全重疊,即偶極距為零,其結(jié)果是電子在分子中的分布是均衡的,以紅外光本身的低能量密度特征,其照射不會改變這種均衡,更不可能使分子電離,即不會導(dǎo)致能量變化。而不同原子構(gòu)成的分子:以水(蒸氣)分子為例,分子中電子的分布偏向氧這端,即微觀上水分子中氫那一端呈正電性,氧那一端呈負(fù)電性,正負(fù)電荷中心是不重疊的,即偶極矩不為零。這是因?yàn)檠跷娮拥哪芰Ρ葰鋸?qiáng)的緣故。
 
在與水分子振動、轉(zhuǎn)動頻率相同的紅外線照射時(shí),會使電子在水分子中的分布更偏向氧一端,導(dǎo)致氫和氧的平均距離變短,即偶極距變短,能量變高,即水分子受到紅外照射時(shí)會從低能級躍遷到高能級,紅外吸收就是這樣產(chǎn)生的??梢赃@樣去簡單理解:紅外線與相同原子組成的分子相遇時(shí),由于相同原子組成的分子是理想的彈性球體,兩者的相互作用是完全彈性碰撞,只有能量交換,沒有能量轉(zhuǎn)移。不同原子組成的分子與紅外線相互作用則有能量轉(zhuǎn)移。因此,紅外吸收原理不能測相同原子構(gòu)成的分子。
 
非色散紅外吸收氣體傳感器
 
非色散:白光通過三棱鏡會被分為七色光即赤、橙、黃、綠、青、藍(lán)、紫。這個(gè)三棱鏡就是一個(gè)分光系統(tǒng),能把7色光分開。有分光系統(tǒng)的光學(xué)系統(tǒng)即色散型光學(xué)系統(tǒng),無分光系統(tǒng)的光學(xué)系統(tǒng)即非色散性。非色散系統(tǒng)簡易、可靠、小巧、廉價(jià)。平時(shí)我們感受到的白光、紫外、紅外光都是不同頻率、波長混合成的光;而單頻率、單波長的光即單色光。前面講到只有紅外線的頻率和氣體分子振動、轉(zhuǎn)動頻率相同時(shí)才會產(chǎn)生紅外吸收,理論上在設(shè)計(jì)氣體傳感器時(shí),我們希望用單色光去照射氣體或者照射后我們用設(shè)置光柵(濾光片)的辦法獲得單色光。
 
非色散紅外氣體傳感器通常由光源、光學(xué)腔體、濾光片(光柵)、探測器和信號調(diào)理電路構(gòu)成,在傳感器中濾光片和探測器是一體的。
 
紅外氣體傳感器優(yōu)點(diǎn):
 
1、除了相同原子組成的氣體,所有氣體都可以測。
 
2、全量程。
 
3、傳感過程本身不會干擾傳感。
 
缺點(diǎn):
 
1、昂貴。紅外氣體傳感器本質(zhì)上是紅外幅射導(dǎo)致探測器溫度變化進(jìn)而是電性能變化的溫度傳感器,傳感過程復(fù)雜。要求系統(tǒng)有如下特征:光源必須有穩(wěn)定的紅外幅射;光學(xué)腔體物理化學(xué)性質(zhì)穩(wěn)定;濾光片及紅外探測器穩(wěn)定。這些問題,合理的工藝技術(shù)本身能較好的解決,但是制造成本高,導(dǎo)致價(jià)格昂貴。
 
2、在普通的以寬頻紅外光源加濾光片加探測器設(shè)計(jì)中,濾光片本身不能實(shí)現(xiàn)理想的選擇性濾光,因此干擾尤其是水的干擾一直存在。選擇性的問題深層原因在于很多不同的氣體分子會有相同的化學(xué)鍵,即有相近甚至重疊的紅外吸收。
 
3、粉塵、背景幅射、強(qiáng)吸附及氣、液、固易發(fā)生轉(zhuǎn)換的檢測對象都會對檢測結(jié)果造成影響。
 
催化燃燒式氣體傳感器
 
作用原理
 
一般由線徑15um或20um或30um的高純度鉑線圈并在其外包裹載體催化劑形式球體,在一定的溫度條件下,當(dāng)可燃性氣體與上述球體接觸時(shí)會與其表面的吸附氧發(fā)生劇烈的無焰燃燒反應(yīng),反應(yīng)釋放的熱量導(dǎo)致鉑線圈溫度變化,溫度變化又導(dǎo)致鉑線圈電阻發(fā)生變化,測量電阻變化就可以測到氣體濃度。
 
深度解讀各類氣體傳感器
 
因此與其說催化元件是氣體傳感器不如說他是個(gè)溫度傳感器,為克服環(huán)境溫度變化帶來的干擾,催化元件會成對構(gòu)成一支完整的元件,這一對中一個(gè)對氣體有反應(yīng),另一個(gè)對氣體無反應(yīng),而只對環(huán)境溫度有反應(yīng),這樣兩支元件相互對沖就可以消除環(huán)境溫度變化帶來的干擾。
 
和半導(dǎo)體元件不同,催化元件傳感過程較為復(fù)雜,前者是氣體與傳感器接觸后發(fā)生的化學(xué)反應(yīng)直接導(dǎo)致傳感器電阻即電信號的變化,后者則是氣體在催化元件上發(fā)生的化學(xué)反應(yīng)首先導(dǎo)致的結(jié)果是傳感器載體表面及載體內(nèi)部的溫度變化,載體的溫度變化經(jīng)過熱傳遞最終導(dǎo)致鉑線圈電阻的變化,完成傳感的全過程。
 
存在的問題
 
傳感過程復(fù)雜,導(dǎo)致問題產(chǎn)生的幾率就大一些。
 
1、對長分子鏈的有機(jī)物以及不飽和烴,對半導(dǎo)體來說,不完全反應(yīng)導(dǎo)致的積炭只會對反應(yīng)過程產(chǎn)生影響,而不會對電子傳輸產(chǎn)生大的影響,而對催化來講,炭的存在不僅影響反應(yīng)過程,更會對熱傳遞產(chǎn)生劇烈影響,結(jié)果是反應(yīng)產(chǎn)生的熱量向傳感器內(nèi)部傳遞效率變低了,熱量大都散失掉了,最終是,同樣的氣體濃度,釋放同樣的熱,由于炭的存在,導(dǎo)致傳感器:溫度只有很小的變化,即靈敏度變得很低。
 
2、因?yàn)樾枰獰醾鬟f,為了保證熱效率,反應(yīng)必須在瞬間完成,即要求有極高的反應(yīng)效率,就需要有大量的納米級的催化劑以及納米級的孔,這樣的特征有利于傳感也有利于中毒。
 
3、催化元件的線性是由兩個(gè)因素決定的a、溫度傳感材料pt線圈的電阻~溫度特性是線性的。b、爆炸下限以內(nèi)反應(yīng)放熱和氣體濃度是線性的。因此,兩個(gè)因素任一發(fā)生變化,就會導(dǎo)致傳感器線性變化。實(shí)際上,鉑線圈會持續(xù)升華變細(xì)即導(dǎo)阻變大;反應(yīng)釋放的熱量與濃度的線性關(guān)系只在氣體濃度為爆炸下限以內(nèi)時(shí)才成立。
 
未來發(fā)展
 
催化元件的未來主要取決于工藝技術(shù)的進(jìn)步:
 
1、結(jié)構(gòu)改進(jìn),解決的問題是震動引起的漂移。
 
2、過濾層改進(jìn),解決的問題是中毒。
 
3、開發(fā)新材料改善積碳。
 
4、制造過程對設(shè)計(jì)實(shí)現(xiàn)的保障如避免形變。
 
5、MEMS化。需要說明的是,器件結(jié)構(gòu)、封裝、制造工藝的改進(jìn)不僅會改善元件的綜合性能,也會引發(fā)新的應(yīng)用。和半導(dǎo)體相比,催化元件MEMS化的困境在于如何在小的表面積下有更高的催化效率、熱效率。
 
6、催化元件的應(yīng)用定位會更精準(zhǔn)專一。
 
7,催化元件不會被淘汰。
 
電化學(xué)傳感器
 
電化學(xué)就是研究電學(xué)和化學(xué)行為之間關(guān)系的學(xué)科。這個(gè)學(xué)科最重要的應(yīng)用是電能與化學(xué)能之間的高效轉(zhuǎn)換和大功率密度存儲技術(shù)。我們知道本質(zhì)上傳感器是一種能量轉(zhuǎn)換裝置,如壓力傳感器就是把機(jī)械能轉(zhuǎn)換為電能的裝置。因此,很容易理解,電化學(xué)氣體傳感器就是一個(gè)電池,叫氣體燃料電池。
 
深度解讀各類氣體傳感器
 
最常見的電池,把一堆可以導(dǎo)電的化學(xué)物質(zhì)裝起來,插入兩個(gè)不同材料的電極,用導(dǎo)線連接就會有電產(chǎn)生。以鉛酸蓄電池為例,硫酸水溶液就是導(dǎo)電的化學(xué)物質(zhì),把鉛放進(jìn)其中,在鉛和硫酸接觸的地方(界面)會產(chǎn)生電,把氧化鉛放進(jìn)去,界面也會有電,兩個(gè)界面電量有差異,即有電壓,用導(dǎo)線連起來電子就會從鉛流到氧化鉛,鉛就變成了氧化鉛,氧化鉛變成了氧化亞鉛。電量和化學(xué)量及反應(yīng)過程相關(guān)聯(lián)。
 
這里最重要的概念:一是把一個(gè)導(dǎo)體插入導(dǎo)電的化學(xué)物質(zhì)中界面會產(chǎn)生電位,同一種物質(zhì)中插入不同的導(dǎo)體產(chǎn)生不同的電位。二是不同的電位相連接,在界面會發(fā)生反應(yīng)。三是導(dǎo)電回路由電池和外接導(dǎo)線兩部分構(gòu)成。電池外部在連接導(dǎo)線內(nèi)是電子,電池內(nèi)是離子。即導(dǎo)電過程由電子移動和離子移動共同完成。
 
深度解讀各類氣體傳感器
 
電化學(xué)CO氣體傳感器是一個(gè)化學(xué)電池即CO燃料電池。其中: CO是提供電子的一極(工作電極),氧氣是獲得電子的一極,硫酸水溶液是電解質(zhì)。和鉛酸蓄電池最大的不同是電極材料不同,電化學(xué)氣體傳感器(co)電極材料是氣體,鉛酸蓄電池是固體。電化學(xué)氣體傳感器的電極叫氣體電極。電化學(xué)CO氣體傳感器中,工作電極CO作為供電子的一極,只有CO和硫酸水溶液觸是無法進(jìn)行的電子釋放、收集和傳導(dǎo)的。其一CO完成提供電子的過程需要條件,即在電催化條件下降低CO提供電子的難度。實(shí)踐中這個(gè)條件由多孔鉑電極(或其它電催化導(dǎo)電電極)提供。其二,CO提供的電子需要導(dǎo)體收集后傳導(dǎo),也由多孔鉑電極完成。
 
同理,作為對電極的氧氣電極亦需要有多孔鉑電極協(xié)助獲得電子。鉑電極實(shí)際上是反應(yīng)平臺。電化學(xué)傳感器傳感原理雖然簡單,但是實(shí)現(xiàn)可靠精確的傳感卻很難:其一需要鉑電極有穩(wěn)定的多孔結(jié)構(gòu),孔的數(shù)量足夠多,硫酸水溶液進(jìn)到孔里,CO (或氧氣)也能進(jìn)到孔里,在氣(CO)-固(pt)-液(硫酸水溶液中的水)共同接觸的位置即三相界面完成電子提供。因此,三相界面如何在硫酸長期浸泡、電化學(xué)反應(yīng)沖擊、電泳驅(qū)動下保持穩(wěn)定,是可靠精確傳感的核心。其二,硫酸水溶液要穩(wěn)定,不揮發(fā),不吸水、不泄漏。任何硫酸水溶液的質(zhì)量變化都會導(dǎo)致傳感器內(nèi)部壓力的變化,進(jìn)而引起三相界面的變化。其三、由封裝、材料物理特性決定的電極和硫酸水溶液接觸應(yīng)力要穩(wěn)定不變。
 
目前電化學(xué)傳感器的主要問題基本源于上述因素。電化學(xué)傳感器最核心的技術(shù)及工藝之一是如何構(gòu)建孔的物理結(jié)構(gòu)合理穩(wěn)定可靠的電極,它和靈敏度、響應(yīng)恢復(fù)、壽命、溫度特性密切相關(guān)。其二是封裝。電化學(xué)傳感器存在的問題如干燥條件下的失水失活、高濕條件下的吸水漏液,長期接觸被測氣體導(dǎo)致的中毒失活,電極孔結(jié)構(gòu)解體導(dǎo)致的失活。體現(xiàn)在性能上是漏液、壽命短(相比其它原理)、體積大。體現(xiàn)在制造上表現(xiàn)為設(shè)計(jì)、工藝復(fù)雜、制造成本昂貴。
 
電化學(xué)傳感器的未來:明確的方向是電解液室溫固態(tài)化并以此為基礎(chǔ)實(shí)現(xiàn)MEMS化。實(shí)現(xiàn)固態(tài)化和MEMS化的電化學(xué)傳感器不僅能夠克服包括制造在內(nèi)的大部分問題,而且可以激發(fā)新的應(yīng)用,為企業(yè)帶來新的增長。此時(shí)的電化學(xué)傳感器將是高度一體化的,易集成的、小巧的電子系統(tǒng)。但是,這樣的結(jié)果仍然不能克服高濃度或被測氣體長期與傳感器接觸導(dǎo)致的傳感器性能變化。
 
PID——光離子化檢測器
 
PID由紫外光源和氣室構(gòu)成。紫外發(fā)光原理與日光燈管相同,只是頻率高,能量大。被測氣體到達(dá)氣室后,被紫外燈發(fā)射的紫外光電離產(chǎn)生電荷流,氣體濃度和電荷流的大小正相關(guān),測量電荷流即可測得氣體濃度。
 
深度解讀各類氣體傳感器
 
特殊氣體:物理形態(tài)多變、化學(xué)過程及反應(yīng)生成物復(fù)雜多樣。包括無機(jī)氣體如氨氣。有機(jī)氣體如甲苯等。
 
前面介紹的各種氣體傳感器,對復(fù)雜氣體的檢測面臨巨大挑戰(zhàn)。如:對有機(jī)蒸氣的檢測,紅外吸收原理面臨著很難克服的困難:a、有機(jī)蒸氣由于分子量大的緣故,特征吸收波長較長,紅外吸收后能量變化小,通常靈敏度會很低。b、長分子鏈的有機(jī)蒸氣易吸附,會粘附在探測器上,破壞光傳輸。c、不能實(shí)現(xiàn)對voc總量的檢測。紅外系統(tǒng)若實(shí)現(xiàn)總量評價(jià),則需要全光譜響應(yīng)的濾光片、探測器和全光譜紅外光源,這樣的要求不僅難實(shí)現(xiàn),即使實(shí)現(xiàn),在全光譜范圍內(nèi),無機(jī)氣體、水的干擾將順理成章。而化學(xué)傳感器中半導(dǎo)體易被無機(jī)氣體、溫、濕度干擾,漂移,濃度分辯率低,雖然其檢測范圍寬、覆蓋氣體種類多,但仍僅適合在低端應(yīng)用。在這樣的背景下,在工業(yè)現(xiàn)場voc檢測時(shí)PlD是較好的選擇。
 
相對其它傳感器plD最大的特點(diǎn)是只對很少的無機(jī)氣體,如氨氣、磷化氫等敏感。原因在于大部分的無機(jī)氣體有很高的電離能(大于11.7ev)。目前plD燈最高紫外幅射能量僅為11.7ev。因此,在石油化工園區(qū),PiD的響應(yīng)可以認(rèn)為是voc的響應(yīng)。
 
PID工作原理
 
1、在真空玻璃腔內(nèi)充入高純度稀有氣體如氬氣、氪氣。
 
2、用紫外透光片氟化鎂單晶將玻璃腔體密封,在此氟化鎂晶體對紫外光透明。
 
3、在玻璃腔外壁套上電極。
 
4、在氟化鎂窗口加上電極和電場,做為被測氣體氣室,這就是一個(gè)完整的可電離VOC的紫外燈。工作時(shí)在玻璃腔外加上高頻電場,紫外燈內(nèi)的稀有氣體被外加電場電離出電子和離子,電子和離子復(fù)合時(shí)紫外光的形式向外幅射能量。紫外光穿過氟化鎂窗口到達(dá)氣室,氣室內(nèi)被測氣體被紫外光電離產(chǎn)生電子和離子,電荷在電場作用下產(chǎn)生電流,就可以測到了。
 
深度解讀各類氣體傳感器
 
PlD穩(wěn)定工作需要:
 
1、PID必須幅射足夠的能量才能電離被測氣體;
 
2、產(chǎn)生紫外光的高頻電場必須是穩(wěn)定的。
 
3、玻璃腔體內(nèi)不能有雜質(zhì)氣體,雜質(zhì)氣體會導(dǎo)致附加電離,影響紫外發(fā)光效率。
 
4、紫外光譜是穩(wěn)定、均勻的。
 
5、紫外光到達(dá)氣室的傳輸是穩(wěn)定、均勻并不與構(gòu)成氣室的金屬電極材料相互作用而產(chǎn)生重金屬沉積,重金屬在紫外幅射窗口沉積會阻擋紫外到達(dá)氣室。
 
這就要求:紫外燈充入的發(fā)光物質(zhì)必須是氣體才能均勻發(fā)光并傳輸。腔體內(nèi)不能有雜質(zhì)氣體,以防止附加電離等。這些要求決定了發(fā)光氣體的選擇只能是稀有氣體。窗口材料則必須對紫外透明并具有穩(wěn)定的理化性質(zhì),事實(shí)上紫外窗口材料的選擇是極其有限的。這些限至條件最終也決定了PID應(yīng)用的局限性。
 
為什么目前的PID不能測丙烷、乙烷、甲烷和大部分無機(jī)物
 
PID的本質(zhì)是使被測物質(zhì)電離后測電荷流,電離需要能量。目前的PID紫外幅射能量最常見的是8.3ev、9.8ev、10.6ev。而電離甲烷需要的能量為12.6ev,乙烷為11.56ev、丙烷為10.95ev、二氧化碳為13ev等。事實(shí)上,人們很想開發(fā)出能量更高的PID,但限至條件在于稀有氣體的種類極其有限,紫外波長(能量)是由稀有氣體本身的電子能級決定的,人類無法改變;另一個(gè)限至條件是特定波長的紫外光透光窗口材料,能透什么樣波長的紫外光取決于窗口材料的晶格常數(shù),在目前的材料體系中選擇也極有限。人們雖然開發(fā)出11.7ev的發(fā)光體,但適合的窗口材料只有氟化鋰(LiF),而氟化鋰極易吸水,導(dǎo)致11.7ev的PID壽命只有兩個(gè)月。即目前的紫外燈由于輸出能量的限制,仍不能檢測甲烷等有較高電離能的物質(zhì)。
 
PID為什么沒有選擇性?
 
如果我們選擇的PID的紫外幅射能量是10.6ev,就意味著被測環(huán)境中電離能小于10.6ev的所有氣體分子都會被電離,我們測到的電荷流是所有被電離氣體的電荷流的和,而不是某種氣體的電荷流。PID無選擇性是由此決定的。
 
PID在工作時(shí),氣室內(nèi)被電離的物質(zhì)相遇時(shí)會復(fù)合還原,長鏈分子、灰塵等會沉積在窗口表面,除此,傳感器工作時(shí)產(chǎn)生的離子流轟擊氣室電極也會使重金屬沉積在窗口表面,這顯然會影響紫外光透過,而導(dǎo)致零點(diǎn)漂移、靈敏度降低,影響檢測結(jié)果。實(shí)際上除了PiD燈的制備技術(shù)、氣室設(shè)計(jì),PID燈紫外透過窗口的清洗技術(shù)也是核心技術(shù)之一。
 
PID的未來
 
1、PiD作為理想的非放射性離子源會永遠(yuǎn)存在;
 
2、提高PID燈內(nèi)充氣前的真空度以及填充氣體純度以提高發(fā)光效率和發(fā)光穩(wěn)定性;
 
3、開發(fā)新的窗口材料及加工精度以改善透光率、出射光均勻性、封裝質(zhì)量、以及穩(wěn)定性和壽命;
 
4、預(yù)防色散導(dǎo)致窗口的重金屬沉積,延長壽命;
 
5、防止大分子有機(jī)物、小顆粒物沉積的窗口清潔技術(shù);
 
6、輸出能量更高的長壽命PID燈的開發(fā);
 
7、小體積。
 
氣體傳感器的發(fā)展方向
 
氣體傳感器的研究涉及面廣、難度大,屬于多學(xué)科交叉的研究內(nèi)容。要切實(shí)提高傳感器各方面的性能指標(biāo)需要多學(xué)科、多領(lǐng)域研究工作者的協(xié)同合作。氣敏材料的開發(fā)和根據(jù)不同原理進(jìn)行傳感器結(jié)構(gòu)的合理設(shè)計(jì)一直受到研究人員的關(guān)注。未來氣體傳感器的發(fā)展也將圍繞這兩方面展開工作。具體表現(xiàn)如下:
 
氣敏材料的進(jìn)一步開發(fā)一方面尋找新的添加劑對已開發(fā)的氣敏材料性能進(jìn)行進(jìn)一步提高;另一方面充分利用納米、薄膜等新材料制備技術(shù)尋找性能更加優(yōu)越的氣敏材料。
 
新型氣體傳感器的開發(fā)和設(shè)計(jì)根據(jù)氣體與氣敏材料可能產(chǎn)生的不同效應(yīng)設(shè)計(jì)出新型氣體傳感器。近年來表面聲波氣體傳感器、光學(xué)式氣體傳感器、石英振子式氣體傳感器等新型傳感器的開發(fā)成功進(jìn)一步開闊了設(shè)計(jì)者的視野。目前仿生氣體傳感器也在研究中。
 
氣體傳感器傳感機(jī)理的進(jìn)一步研究新的氣敏材料和新型傳感器層出不窮,很有必要在理論上對它們的傳感機(jī)理進(jìn)行深度的研究。只有機(jī)理明確了,下一步的工作才會少走彎路。
 
氣體傳感器的智能化生產(chǎn)和生活日新月異的發(fā)展對氣體傳感器提出了更高的要求,氣體傳感器智能化是其發(fā)展的必由之路。智能氣體傳感器將在充分利用微機(jī)械與微電子技術(shù)、計(jì)算機(jī)技術(shù)、信號處理技術(shù)、電路與系統(tǒng)、傳感技術(shù)、神經(jīng)網(wǎng)絡(luò)技術(shù)、模糊理論等多學(xué)科綜合技術(shù)的基礎(chǔ)上得到發(fā)展。
 
仿生氣體傳感器的迅速發(fā)展 警犬的鼻子就是一種靈敏度和選擇性都非常好的理想氣敏傳感器,結(jié)合仿生學(xué)和傳感器技術(shù)研究類似狗鼻子的"電子鼻"將是氣體傳感器發(fā)展的重要方向之一。
 
本文轉(zhuǎn)載自傳感器技術(shù)。
 
 
推薦閱讀:
 
無線充電技術(shù)及零部件和解決方案
TDK過電壓保護(hù)解決方案分析
怎么看待汽車電子車載48V技術(shù)方案
用脈沖響應(yīng)來分析后均衡ISI
盤點(diǎn)2017年傳感器江湖風(fēng)云變幻及國際大廠新品
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉