【導(dǎo)讀】本文將簡(jiǎn)要介紹超聲成像系統(tǒng)進(jìn)行,并詳細(xì)分析超聲電源管理設(shè)計(jì)方面的一些挑戰(zhàn)和解決方案。文中主要討論了4個(gè)設(shè)計(jì)考慮因素:系統(tǒng)噪聲電平、開(kāi)關(guān)噪聲、電磁干擾(EMI),以及與其電源相關(guān)的超聲散熱。本文還將說(shuō)明Silent Switcher?模塊和低噪聲LDO技術(shù)如何幫助解決常見(jiàn)的問(wèn)題并改善系統(tǒng)噪聲,提高圖像質(zhì)量。
簡(jiǎn)介
自2000年(GE)首次推出數(shù)字超聲技術(shù)以來(lái),超聲市場(chǎng)發(fā)展迅速。超聲技術(shù)已從基于靜態(tài)轉(zhuǎn)向動(dòng)態(tài),并從黑白轉(zhuǎn)向彩色多普勒。隨著超聲應(yīng)用越來(lái)越多,對(duì)組件的要求也不斷提高,例如與探頭、AFE和電源系統(tǒng)相關(guān)的要求。
在醫(yī)療診斷領(lǐng)域,越來(lái)越多的應(yīng)用需要超聲成像系統(tǒng)輸出更高的圖像質(zhì)量。提高圖像質(zhì)量的關(guān)鍵技術(shù)之一是提高系統(tǒng)的信噪比(SNR)。下文將討論影響噪聲的不同因素,特別是電源。
超聲的工作原理是什么?
超聲系統(tǒng)由換能器、發(fā)射電路、接收電路、后端數(shù)字處理電路、控制電路和顯示模塊等組成。數(shù)字處理模塊通常包含現(xiàn)場(chǎng)可編程門陣列(FPGA),F(xiàn)PGA根據(jù)系統(tǒng)的配置和控制參數(shù)生成發(fā)射波束成形器及相應(yīng)的波形圖案。然后,發(fā)射電路中的驅(qū)動(dòng)和高壓電路生成高壓信號(hào)來(lái)激勵(lì)超聲換能器。超聲換能器通常采用PZT陶瓷制成。換能器將電壓信號(hào)轉(zhuǎn)換為超聲波進(jìn)入人體,同時(shí)接收人體組織產(chǎn)生的回波?;夭ㄞD(zhuǎn)換成小電壓信號(hào),并傳輸至發(fā)射/接收(T/R)開(kāi)關(guān)。T/R開(kāi)關(guān)的主要目的是防止高壓發(fā)射信號(hào)損壞低壓接收模擬前端。模擬電壓信號(hào)經(jīng)過(guò)信號(hào)調(diào)理、放大和濾波后,傳輸至AFE的集成ADC,然后轉(zhuǎn)換成數(shù)字?jǐn)?shù)據(jù)。數(shù)字?jǐn)?shù)據(jù)通過(guò)JESD204B或LVDS接口發(fā)射到FPGA進(jìn)行接收波束成形,然后發(fā)射到后端數(shù)字部分進(jìn)一步處理,從而創(chuàng)建超聲圖像。
圖1.超聲系統(tǒng)方框圖。
電源如何影響超聲系統(tǒng)?
從上述超聲架構(gòu)來(lái)看,系統(tǒng)噪聲會(huì)受到許多因素的影響,如發(fā)射信號(hào)鏈、接收信號(hào)鏈、TGC增益控制、時(shí)鐘和電源。在本文中,我們將討論電源如何影響噪聲。
超聲系統(tǒng)提供不同類型的成像模式,每種成像模式對(duì)動(dòng)態(tài)范圍有不同的要求。這也意味著,SNR或噪聲要求取決于不同的成像模式。黑白模式需要70 dB動(dòng)態(tài)范圍,脈沖波多普勒(PWD)模式需要130 dB,連續(xù)波多普勒(CWD)模式需要160 dB。對(duì)于黑白模式,本底噪聲非常重要,它會(huì)影響在遠(yuǎn)場(chǎng)能夠看到的最小超聲回波的最大深度,也就是穿透性,這是黑白模式的關(guān)鍵特性之一。對(duì)于PWD和CWD模式,1/f噪聲尤為重要。PWD和CWD圖像均包括1 kHz以下的低頻譜,相位噪聲會(huì)影響1 kHz以上的多普勒頻譜。由于超聲換能器頻率通常為1 MHz至15 MHz,因此該范圍內(nèi)的任何開(kāi)關(guān)頻率噪聲都會(huì)對(duì)其造成影響。如果PWD和CWD頻譜(從100 Hz至200 kHz)中存在互調(diào)頻率,多普勒?qǐng)D像中將會(huì)出現(xiàn)明顯的噪聲頻譜,這在超聲系統(tǒng)中是不可接受的。
另一方面,通過(guò)考慮相同的因素,良好的電源可改善超聲圖像。設(shè)計(jì)人員為超聲應(yīng)用設(shè)計(jì)電源時(shí),應(yīng)了解多個(gè)因素。
開(kāi)關(guān)頻率
如前所述,必須避免將意外的諧波頻率引入采樣頻帶(200 Hz至100 kHz)。在電源系統(tǒng)中,很容易找到此類噪聲。
大多數(shù)開(kāi)關(guān)穩(wěn)壓器使用電阻來(lái)設(shè)置開(kāi)關(guān)頻率。該電阻的誤差會(huì)在PCB上引入不同的開(kāi)關(guān)標(biāo)稱頻率和諧波。例如,在400 kHz DC/DC穩(wěn)壓器中,1%精度電阻提供±1%誤差和4 kHz諧波頻率。更好的解決方案是選擇具有同步功能的電源轉(zhuǎn)換開(kāi)關(guān)。外部時(shí)鐘將通過(guò)SYNC引腳向所有穩(wěn)壓器發(fā)送信號(hào),使所有穩(wěn)壓器切換到相同頻率和相同相位下工作。
此外,出于EMI考量或更高的瞬態(tài)響應(yīng),一些穩(wěn)壓器具有20%的可變開(kāi)關(guān)頻率,這會(huì)導(dǎo)致400 kHz電源中產(chǎn)生0 kHz至80 kHz諧波頻率。恒頻開(kāi)關(guān)穩(wěn)壓器有助于解決這一問(wèn)題。ADI的Silent Switcher電源穩(wěn)壓器和電源模塊系列具有恒定頻率開(kāi)關(guān)功能,同時(shí)在不開(kāi)啟擴(kuò)頻的情況下,仍保持出色的EMI性能,以及出色的瞬態(tài)響應(yīng)。
白噪聲
超聲系統(tǒng)中也有許多白噪聲源,這會(huì)導(dǎo)致超聲成像中出現(xiàn)背景噪聲。該噪聲主要來(lái)自信號(hào)鏈、時(shí)鐘和電源。
現(xiàn)在,在模擬處理組件的模擬電源引腳添加LDO穩(wěn)壓器是常見(jiàn)的做法。ADI的下一代LDO穩(wěn)壓器具有大約1 μV rms的超低噪聲,涵蓋200 mA至3 A的電流。電路和規(guī)格參數(shù)如圖2和圖3所示。
圖2.下一代低噪聲LDO穩(wěn)壓器。
圖3.下一代LT3073的低噪聲譜密度。
PCB布局
在設(shè)計(jì)超聲系統(tǒng)中的數(shù)據(jù)采集板時(shí),通常需要考慮高電流電源部分和高度敏感的信號(hào)鏈部分之間的權(quán)衡。開(kāi)關(guān)電源產(chǎn)生的噪聲很容易耦合到信號(hào)路徑走線中,并且很難通過(guò)數(shù)據(jù)處理去除。開(kāi)關(guān)噪聲通常由開(kāi)關(guān)輸入電容(圖4)以及上側(cè)或下側(cè)開(kāi)關(guān)生成的熱回路產(chǎn)生。添加緩沖電路可幫助管理電磁輻射;但同時(shí)也會(huì)降低效率。即使在高開(kāi)關(guān)頻率下,Silent Switcher架構(gòu)也有助于提高EMI性能,并保持高效率。
手持式數(shù)字探頭
除了因吸收超聲而引起的發(fā)熱,換能器本身的溫度對(duì)換能器附近組織的溫度影響很大。通過(guò)向換能器施加電信號(hào),可生成超聲脈沖。一些電能在元件、鏡頭和基底材料中耗散,導(dǎo)致?lián)Q能器發(fā)熱。此外,對(duì)換能器頭中收到的信號(hào)進(jìn)行電子處理也可能會(huì)產(chǎn)生電熱。從換能器表面排出熱量會(huì)使表面組織的溫度升高幾攝氏度。IEC標(biāo)準(zhǔn)60601-2-37(2007版)中指定了最大容許換能器表面溫度(TSURF)。1當(dāng)換能器信號(hào)發(fā)射到空氣中時(shí),最大容許換能器表面溫度為50°C;當(dāng)發(fā)射到合適的假體時(shí),該溫度為43°C。后一項(xiàng)限制意味著,皮膚溫度(通常為33°C)最高可升高10°C。在復(fù)雜的換能器中,換能器發(fā)熱是重要的設(shè)計(jì)考量,在一些情況下,這些溫度限制可能會(huì)有效約束能夠達(dá)到的聲輸出。
當(dāng)換能器在空氣中運(yùn)行時(shí),安全標(biāo)準(zhǔn)IEC 60601-2-37(2007版)1將換能器表面的溫度限制到50°C以下,當(dāng)換能器在33°C(對(duì)于外部應(yīng)用的換能器)或37°C(對(duì)于內(nèi)部換能器)與假體接觸時(shí),該標(biāo)準(zhǔn)將其表面溫度限制到43°C以下。通常這些溫度限制(而不是對(duì)波束中最大強(qiáng)度的限制)約束了換能器的聲輸出。Silent Switcher設(shè)備將功率(具有最高3 MHz的寬開(kāi)關(guān)帶寬)轉(zhuǎn)換到數(shù)字探頭的不同電壓域的效率最高。這意味著,功率轉(zhuǎn)換期間的功率損耗很低。這對(duì)冷卻系統(tǒng)大有幫助,因?yàn)闆](méi)有太多額外功率以熱量形式損耗。
Silent Switcher模式大有幫助
Silent Switcher模塊技術(shù)是進(jìn)行超聲電源軌設(shè)計(jì)的明智選擇。引入該模式是為了幫助改善EMI和開(kāi)關(guān)頻率噪聲。傳統(tǒng)上,我們應(yīng)該關(guān)注每個(gè)開(kāi)關(guān)穩(wěn)壓器的熱回路上的電路和布局設(shè)計(jì)。對(duì)于降壓電路,如圖4所示,熱回路包含輸入電容、頂部MOSFET、底部MOSFET,以及由走線、路由、邊界(bounding)等引起的寄生電感。
Silent Switcher模塊主要提供兩種設(shè)計(jì)方法:
第一,如圖4和圖5所示,通過(guò)創(chuàng)建對(duì)立的熱回路,由于雙向輻射,大多數(shù)EMI將減少。通過(guò)該方法,將優(yōu)化近20 dB。
圖4.拆分熱回路的原理圖。
圖5.比較靜音開(kāi)關(guān)和非靜音開(kāi)關(guān)EMI性能。
第二,如圖6所示,Silent Switcher模塊不是直接在芯片周圍焊接,而是采用銅柱倒裝芯片封裝,有助于減少寄生電感,優(yōu)化尖峰和死區(qū)時(shí)間。
圖6.與傳統(tǒng)綁定技術(shù)(LT8610)相比較的銅柱倒裝芯片封裝及其性能(LT8614)。
此外,如圖7所示,Silent Switcher技術(shù)提供高功率密度設(shè)計(jì),并且能夠在小封裝中實(shí)現(xiàn)大電流能力,從而保持低θ JA,實(shí)現(xiàn)高效率(例如, LTM4638 能夠在6.25 mm × 6.25 mm × 5.02 mm封裝中實(shí)現(xiàn)15 A)。
圖7.Silent Switcher電源模塊封裝內(nèi)視圖。
表1.Silent Switcher模塊概覽
表2.熱門Silent Switcher產(chǎn)品
此外,許多Silent Switcher模塊也具有固定頻率、寬頻率范圍和峰值電流架構(gòu),從而實(shí)現(xiàn)低抖動(dòng)和快速瞬態(tài)響應(yīng)。該產(chǎn)品系列中的熱門產(chǎn)品參見(jiàn)表2。
結(jié)論
ADI的Silent Switcher電源模塊和LDO產(chǎn)品為超聲電源軌設(shè)計(jì)提供了完整的解決方案,盡可能減少了系統(tǒng)噪聲電平和開(kāi)關(guān)噪聲。這有助于改善圖像質(zhì)量,而且有助于限制溫度升高,并簡(jiǎn)化PCB布局設(shè)計(jì)復(fù)雜性。
參考電路
1 IEC標(biāo)準(zhǔn)60601-2-37。2007。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
如何化解第三代半導(dǎo)體的應(yīng)用痛點(diǎn)
如何測(cè)量運(yùn)算放大器的輸入電容以盡可能降低噪聲
采用MP188XX隔離式柵極驅(qū)動(dòng)器系列構(gòu)建電源系統(tǒng)