你的位置:首頁 > 電源管理 > 正文

負電壓DC/DC開關(guān)電源的設(shè)計

發(fā)布時間:2012-10-29 責(zé)任編輯:Lynnjiao

【導(dǎo)讀】隨著電子技術(shù)的飛速發(fā)展,現(xiàn)代電子測量裝置往往需要負電源為其內(nèi)部的集成電路芯片與傳感器供電。如集成運算放大器、電壓比較器、霍爾傳感器等。負電源的好壞很大程度上影響電子測量裝置運行的性能,嚴(yán)重的話會使測量的數(shù)據(jù)大大偏離預(yù)期。目前,電子測量裝置的負電源通常采用抗干擾能力強,效率高的開關(guān)電源供電方式。

隨著電子技術(shù)的飛速發(fā)展,現(xiàn)代電子測量裝置往往需要負電源為其內(nèi)部的集成電路芯片與傳感器供電。如集成運算放大器、電壓比較器、霍爾傳感器等。

負電源的好壞很大程度上影響電子測量裝置運行的性能,嚴(yán)重的話會使測量的數(shù)據(jù)大大偏離預(yù)期。目前,電子測量裝置的負電源通常采用抗干擾能力強,效率高的開關(guān)電源供電方式。以往的隔離開關(guān)電源技術(shù)通過變壓器實現(xiàn)負電壓的輸出,但這會增大負電源的體積以及電路的復(fù)雜性。而隨著越來越多專用集成DC/DC控制芯片的出現(xiàn),使得電路簡單、體積小的非隔離負電壓開關(guān)電源在電子測量裝置中得到了越來越廣泛的應(yīng)用。因此,對非隔離負電壓開關(guān)電源的研究具有很高的實用價值。

傳統(tǒng)的非隔離負電壓開關(guān)電源的電路拓撲有以下兩種,如圖1、圖2所示。圖3是其濾波輸出電容的充電電流波形。由圖3可見,采用圖2結(jié)構(gòu)的可獲得輸出紋波更小的負電壓電源,并且在相同電感峰值電流的情況下其帶負載能力更強。由于圖2的開關(guān)器件要接在電源的負極,這會使得其控制電路會比圖1來得復(fù)雜,因此在市場也沒有實現(xiàn)圖2電路結(jié)構(gòu)(類似于線性穩(wěn)壓電源調(diào)節(jié)芯片7915功能)的負電壓開關(guān)電源控制芯片。

為了彌補現(xiàn)有非隔離負電壓開關(guān)電源技術(shù)的不足,以獲得一種帶負載能力強、輸出紋波小的非隔離負電壓開關(guān)電源,本文提出一種采用Boost開關(guān)電源控制芯片LT1935及分立元件實現(xiàn)了圖2所示原理的基于峰值電流控制的新型非隔離負電壓DC/DC開關(guān)電源。

傳統(tǒng)的非隔離負電壓開關(guān)電源電路結(jié)構(gòu)1
圖1:傳統(tǒng)的非隔離負電壓開關(guān)電源電路結(jié)構(gòu)1

傳統(tǒng)的非隔離負電壓開關(guān)電源電路結(jié)構(gòu)2
圖2:傳統(tǒng)的非隔離負電壓開關(guān)電源電路結(jié)構(gòu)2

兩種開關(guān)電源濾波電容的充電電流波形
圖3:兩種開關(guān)電源濾波電容的充電電流波形

1 工作原理分析

本文設(shè)計的非隔離負電壓DC/DC開關(guān)電源如圖4所示,負電源工作在連續(xù)電流模式。當(dāng)電源控制器LT1935內(nèi)部的功率三極管導(dǎo)通時,直流電源給輸出電感L1和輸出電容C1充電。當(dāng)電源控制器LT1935內(nèi)部的功率三極管關(guān)斷時,輸出電感L1中的電流改由通過肖特基二極管VD1提供的低阻抗回路繼續(xù)給輸出電容C1充電直至下一個周期電源控制器LT1935內(nèi)部的功率三極管再次導(dǎo)通??梢婋娙軨1在輸出電感L1儲存能量和釋放能量的過程中均獲得充電,從而減小了輸出紋波電壓。同時,在CCM條件下,輸出電流在LT1935內(nèi)部功率三極管的導(dǎo)通和關(guān)斷期間均通過輸出電感L1,這很大程度上抑制了輸出電流的波動,降低了輸出紋波電流的影響,進而大大增加系統(tǒng)的帶負載能力和效率?! ?/p>

反饋控制回路采用了峰值電流控制。相比傳統(tǒng)的電壓控制,峰值電流控制一方面能很好的改善電源的動態(tài)響應(yīng),另一方面還能實現(xiàn)快速的過電流保護,很大程度上提高了系統(tǒng)的可靠性。由于采用了電源控制器LT1935,其內(nèi)部集成了峰值電路控制電路和斜坡補償電路,非隔離負電壓DC/DC開關(guān)電源反饋回路設(shè)計即轉(zhuǎn)換為補償網(wǎng)絡(luò)設(shè)計,進而大大簡化了反饋回路的設(shè)計。

為防止過高的直流電源對電源控制器的危害,這里使用穩(wěn)壓管VD2和VD3實現(xiàn)過電壓保護。

非隔離負電壓DC/DC開關(guān)電源硬件電路圖
圖4:非隔離負電壓DC/DC開關(guān)電源硬件電路圖

[member]
[page]
2 補償網(wǎng)絡(luò)  

2.1 非隔離負電壓開關(guān)電源小信號建模

從本質(zhì)上來講,本文介紹的非隔離負電壓DC/DC開關(guān)電源為非隔離負電壓Buck開關(guān)電源,其等效功率級電路原理圖如圖5所示,這里考慮了輸出濾波電容的等效串聯(lián)電阻Resr對系統(tǒng)的影響。

非隔離負電壓Buck開關(guān)電源等效功率級電路原理圖
圖5:非隔離負電壓Buck開關(guān)電源等效功率級電路原理圖

圖6給出圖5利用平均電路法建立的非隔離負電壓Buck開關(guān)電源CCM大信號模型。設(shè)Vi為輸入電壓的穩(wěn)態(tài)值,Vo為輸出電壓的穩(wěn)態(tài)值,Vpc為受控電壓源兩端電壓的穩(wěn)態(tài)值,Ii為輸入電流的穩(wěn)態(tài)值,IL為輸出電感電流的穩(wěn)態(tài)值,D為占空比的穩(wěn)態(tài)值。

非隔離負電壓Buck開關(guān)電源CCM大信號模型
圖6:非隔離負電壓Buck開關(guān)電源CCM大信號模型

引入上述穩(wěn)態(tài)值對應(yīng)的小信號擾動。

11

令:

22

可以推導(dǎo)出:

 

33

若小信號干擾滿足D,忽略二次項并化簡等式(3)和等式(4)得,的線性化表達式為:

 

44

根據(jù)等式(5)和等式(6),即可得到圖7所示的用理想變壓器表示非隔離負電壓Buck開關(guān)電源的CCM小信號模型。

非隔離負電壓Buck開關(guān)電源CCM小信號模型
圖7:非隔離負電壓Buck開關(guān)電源CCM小信號模型

2.2 補償網(wǎng)絡(luò)設(shè)計  

圖8為電流連續(xù)模式下峰值電流控制(CCMCPM)型非隔離負電壓Buck開關(guān)電源的系統(tǒng)框圖??刂骗h(huán)路包括了電流內(nèi)環(huán)和電壓外環(huán)兩個部分。補償網(wǎng)絡(luò)屬于電壓外環(huán),因此設(shè)計補償網(wǎng)絡(luò)需要先建立包含電流控制內(nèi)環(huán)的小信號模型。

CCM-CPM型非隔離負電壓Buck開關(guān)電源系統(tǒng)框圖
圖8:CCM-CPM型非隔離負電壓Buck開關(guān)電源系統(tǒng)框圖

假設(shè)系統(tǒng)穩(wěn)定,且忽略輸出電感紋波電壓及人工斜坡補償?shù)挠绊懀瑒t輸出電感電流等于控制電流。

 

要采購開關(guān)么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉