你的位置:首頁(yè) > 電源管理 > 正文

低功耗電源的電感選擇

發(fā)布時(shí)間:2008-10-01 來(lái)源:電子產(chǎn)品世界

中心論題:

  • Buck電路對(duì)電感的要求。
  • 電感參數(shù)的選擇。
  • 磁芯損耗測(cè)試設(shè)備的介紹。
解決方案:
  • 多芯電線可以適度環(huán)節(jié)趨膚效應(yīng)。
  • 多芯電線對(duì)交流電流紋波遠(yuǎn)小于直流的電路有效降低電感的總損耗。
  • 在設(shè)計(jì)開關(guān)電源前對(duì)電感的磁芯損耗進(jìn)行測(cè)試簡(jiǎn)化測(cè)試。
超低功率或者超高功率開關(guān)電源的電感,并不象一般開關(guān)電源那樣容易選擇。目前常規(guī)的電感都是為一些主流設(shè)計(jì)所制造,并不能很好地滿足一些特殊設(shè)計(jì)。本文主要討論超低功率、超高效率Buck電路的電感選擇問題。典型應(yīng)用實(shí)例就是小體積電池長(zhǎng)時(shí)間供電設(shè)備。在這種電路中,讓工程師感到棘手的問題主要是電池容量(成本與體積)與Buck電路體積、效率之間的矛盾。為了減小開關(guān)電源的體積,最好選擇盡可能高的開關(guān)頻率。但是開關(guān)損耗以及輸出電感的損耗會(huì)隨著開關(guān)頻率的提高而增大,而且很有可能成為影響效率的主要因素,正是這些矛盾大大提高了電路設(shè)計(jì)的難度。

Buck電路的電感要求
對(duì)工程師而言,鐵磁性元件(電感)可能是最早接觸的非線性器件。但是根據(jù)制造商提供的數(shù)據(jù),很難預(yù)測(cè)電感在高頻時(shí)的損耗。因?yàn)橹圃焐掏ǔV惶峁┲T如開路電感、工作電流、飽和電流、直流電阻以及自激頻率等參數(shù)。對(duì)于大部分開關(guān)電源設(shè)計(jì)來(lái)說(shuō),這些參數(shù)已經(jīng)足夠了,并且根據(jù)這些參數(shù)選擇合適的電感也非常容易。但是,對(duì)于超低電流、超高頻率開關(guān)電源來(lái)說(shuō),電感磁芯的非線性參數(shù)對(duì)頻率非常敏感,其次,頻率也決定了線圈損耗。

對(duì)于普通開關(guān)電源,相對(duì)于直流I2R損耗來(lái)說(shuō),磁芯損耗幾乎可以忽略不計(jì)。所以通常情況下,除了“自激頻率“這個(gè)與頻率有關(guān)的參數(shù)外,電感幾乎沒有其他與頻率相關(guān)的參數(shù)。但是,對(duì)于超低功率、超高頻率系統(tǒng)(電池供電設(shè)備),這些高頻損耗(磁芯損耗和線圈損耗)通常會(huì)遠(yuǎn)遠(yuǎn)大于直流損耗。

線圈損耗包括直流I2R損耗和交流損耗。其中,交流損耗主要是由于趨膚效應(yīng)和鄰近效應(yīng)所導(dǎo)致。趨膚效應(yīng)是指隨著頻率的提高移動(dòng)的電荷越來(lái)越趨于導(dǎo)體表面流動(dòng),相當(dāng)于減小了導(dǎo)體導(dǎo)電的橫截面積,提高了交流阻抗。比如:在2MHz頻率,導(dǎo)體導(dǎo)電深度(從導(dǎo)體表面垂直向下)大概只有0.00464厘米。這就導(dǎo)致電流密度降低到原來(lái)的1/e (大概0.37)。鄰近效應(yīng)是指電流在電感相鄰導(dǎo)線所產(chǎn)生的磁場(chǎng)會(huì)互相影響,從而導(dǎo)致所謂的“擁擠電流”,也會(huì)提高交流阻抗。對(duì)于趨膚效應(yīng),可以通過(guò)多芯電線(同一根導(dǎo)線內(nèi)含多根細(xì)導(dǎo)線)適度緩解。對(duì)于那些交流電流紋波遠(yuǎn)小于直流電流的電路,多芯電線可以有效降低電感的總損耗。
  
磁芯損耗主要是由于磁滯現(xiàn)象以及磁芯內(nèi)部傳導(dǎo)率或其他非線性參數(shù)的互感產(chǎn)生。在Buck拓?fù)浣Y(jié)構(gòu)中,第一象限的B-H磁滯回線對(duì)磁芯損耗影響最大。在第一象限這個(gè)局部圖中,磁滯回線顯示了電感從初始電感量過(guò)渡到峰值電感量再回到初始電感量的過(guò)程。如果開關(guān)電源穩(wěn)定工作在不連續(xù)狀態(tài),磁滯回線會(huì)從剩余電感量(Br)過(guò)渡到峰值電感量(參考圖1)。如果開關(guān)電源工作在連續(xù)狀態(tài),那么磁滯回線將會(huì)從直流偏置點(diǎn)上升到曲線峰值,再回到直流偏置點(diǎn)。通過(guò)實(shí)驗(yàn)可以確定磁滯回線的精確曲線形狀(基本上是橢圓曲線)。
 
圖1  某Buck電路電感B-P磁滯回線

大部分磁芯由粉狀磁性材料和陶瓷等粘合材料構(gòu)成。一個(gè)未使用過(guò)的磁芯可以簡(jiǎn)單地想象成由一層薄薄的粘合材料包裹、彼此獨(dú)立、具有隨機(jī)方向性的大量磁針。由于目前還沒有能夠很好解釋磁芯損耗的統(tǒng)一模型,所以采用上述這個(gè)經(jīng)驗(yàn)?zāi)P徒忉尨判緭p耗,在本文最后的參考文獻(xiàn)中有更深入的磁芯模型,供讀者參考。
  
磁性方向近似的鄰近磁針會(huì)互相影響,從而形成“聯(lián)盟”。雖然這些磁針由粘合材料包裹,物理上彼此獨(dú)立,但它們之間的磁場(chǎng)是相互關(guān)聯(lián)的。我們稱這些“聯(lián)盟”為“單元”。而單元的邊界就是內(nèi)部“聯(lián)盟”與外部磁針的分割面。在單元的邊界外的磁針比較難與邊界內(nèi)的“聯(lián)盟”聯(lián)合。我們稱這些邊界為“單元壁”,這個(gè)模型常用來(lái)解釋磁芯的許
多基本參數(shù)。
  
在對(duì)磁芯施加磁場(chǎng)時(shí)(對(duì)線圈施加電流),方向不同的單元相互之間相關(guān)聯(lián)。當(dāng)足夠強(qiáng)的電流形成外加磁場(chǎng)時(shí),那些靠近線圈的單元所處的磁場(chǎng)更強(qiáng),會(huì)首先形成聯(lián)合(更大的單元)。而此時(shí)處在深一層的單元還未受到磁場(chǎng)的影響。聯(lián)合起來(lái)的單元與未受到影響的單元之間的單元壁會(huì)在磁場(chǎng)的作用下,持續(xù)向磁芯中心移動(dòng)。如果線圈中的電流不撤銷或翻轉(zhuǎn)的話,整個(gè)磁芯都將會(huì)聯(lián)合在一起。整個(gè)磁芯的磁針聯(lián)合在一起,我們稱為“飽和”。電感制造商給出的B-H磁滯回線正表示磁芯從被磁化的初始階段到飽和階段的過(guò)程。如果將電流減弱,那么單元就會(huì)向自由的初始態(tài)轉(zhuǎn)變,但是有些單元會(huì)繼續(xù)保持聯(lián)合的狀態(tài)。這種不完全的轉(zhuǎn)化就是剩磁(可以在磁滯回線中看出)。這種剩磁現(xiàn)象就會(huì)在下一次單元結(jié)合時(shí)體現(xiàn)為應(yīng)力,導(dǎo)致磁芯損耗。
  
每個(gè)周期內(nèi)的磁滯損耗為:

WH=mH×dI

式中積分為磁滯回線中的包羅面積,磁芯從初始電感量到峰值電感量,再回到初始電感量的整個(gè)過(guò)程。而在開關(guān)頻率為F時(shí)的能量損耗為:
  
PH = F×mH×dI
  
計(jì)算這些交流損耗看起來(lái)似乎容易。但是在高頻、中等通流密度下,情況將異常復(fù)雜。每個(gè)電路都存在一些對(duì)磁芯損耗有影響的參數(shù),而這些參數(shù)一般都很難量化。比如:離散電容、PCB布局、驅(qū)動(dòng)電壓、脈沖寬度、負(fù)載狀態(tài)、輸入輸出電壓等。不幸的是,磁芯損耗受這些參數(shù)影響很嚴(yán)重。

每個(gè)磁芯材料都有能導(dǎo)致?lián)p耗的非線性電導(dǎo)率。正是這個(gè)電導(dǎo)率,會(huì)由于外加磁場(chǎng)而在磁芯內(nèi)部誘發(fā)會(huì)產(chǎn)生損耗 “渦電流”。在恒定磁通量下,磁芯損耗大致與頻率n次方成正比。其中指數(shù)n會(huì)隨磁芯材料以及制造工藝不同而不同。通常的電感制造商會(huì)通過(guò)磁芯損耗曲線擬合出經(jīng)驗(yàn)的近似公式。
 
電感參數(shù)
磁感應(yīng)強(qiáng)度B在正激開關(guān)電路中可以由下式表示:
  
Bpk = Eavg/(4×A×N×f)
  
式中Bpk為尖峰交流通流密度(Teslas);Eavg為每半周期平均交流電壓;A為磁芯橫截面積(平方米);N為線圈匝數(shù);f為頻率(赫茲)。
  
一般來(lái)講,磁性材料制造商會(huì)評(píng)估磁芯的額定電感系數(shù)-AL。通過(guò)AL可以很容易的計(jì)算出電感量。
  
L = N2AL
  
其中AL與磁性材料的摻雜度成正比,也與磁芯的橫截面積除以磁路長(zhǎng)度成正比。磁芯的總損耗等于磁芯的體積乘以Bpk乘以頻率,單位為瓦特/立方米。其與制造材料與制造工藝息息相關(guān)。

磁芯損耗測(cè)試設(shè)備
測(cè)試電感性能的最有效方法就是將被測(cè)試電感放置在最終開關(guān)電源電路上,然后對(duì)此電路的效率進(jìn)行測(cè)量。但是,這種測(cè)試方法需要有最終電路,不易采用?,F(xiàn)在,有一種相對(duì)簡(jiǎn)單的測(cè)試方法,可以在設(shè)計(jì)開關(guān)電源前對(duì)電感的磁芯損耗進(jìn)行測(cè)試(在其設(shè)定的開關(guān)頻點(diǎn)上)。首先,將磁芯串連放置在低損耗電容介質(zhì)上(比如鍍銀云母)。然后,用一系列共振模驅(qū)動(dòng)。其中介質(zhì)的電容值需要與被測(cè)電感的開關(guān)頻率一致。最后采用網(wǎng)絡(luò)分析儀來(lái)完成整個(gè)測(cè)試過(guò)程(信號(hào)發(fā)生器加上一個(gè)射頻伏特計(jì)或者功率計(jì)也可以完成測(cè)試)。測(cè)試設(shè)備的結(jié)構(gòu)如圖2所示。
 
圖2  測(cè)試測(cè)試剖面圖

在諧振點(diǎn),低損耗的磁芯可以看成L-C共振回路。此時(shí)損耗可以等效為一個(gè)純阻元件(包括線圈損耗和磁芯損耗)。在上面的測(cè)試設(shè)備中,端子A和R都連接著50Ω電阻。此設(shè)備的開路(不包括電感)等效為150Ω負(fù)載的振蕩器。在網(wǎng)絡(luò)分析儀上可以表示為:
  
20×Log(A/R) = 20×Log(50/150) = -9.54 dB
  
在這個(gè)測(cè)試電路中,諧振電容為2000pF,被測(cè)電感大概為2.5mH~2.8mH,測(cè)試頻率為1kHz。其中,磁性材料的滲透率是一個(gè)與頻率有關(guān)的非線性函數(shù),在更高的頻點(diǎn)上,測(cè)試結(jié)果有可能不同。

 磁芯損耗實(shí)驗(yàn)數(shù)據(jù)
一個(gè)相對(duì)磁導(dǎo)率為125mr的單層鐵鎳鉬薄片磁芯,外圍纏繞10/44的多芯電線16匝,另一個(gè)雙層250摻雜度的鎳鐵鉬磁粉芯,外圍纏繞10/44的多芯電線8匝。電感量測(cè)試值分別為2.75mHy 和 2.78mHy。第一個(gè)電感雖然是16匝,但是橫截面積是第二個(gè)電感的一半。在相同振幅信號(hào)的驅(qū)動(dòng)下,這兩個(gè)電感的損耗都很高。等效電阻分別為360Ω 和300Ω。相對(duì)的,另一個(gè)電感(2.5mHy)采用Micrometals公司的非常低的摻雜材料(羰基T25-6  ,相對(duì)磁導(dǎo)率為 8.5)。10/44多芯電線34匝。在同樣的驅(qū)動(dòng)信號(hào)下,他的等效損耗電阻為22000Ω。

結(jié)語(yǔ)
對(duì)于低功耗開關(guān)電源的電感選取有許多特殊注意之處。對(duì)于低功耗、高效率的開關(guān)電源設(shè)計(jì),一般的器件資料或者選型表提供的參數(shù)是遠(yuǎn)遠(yuǎn)不夠的。通常的電感都是鐵氧體磁芯(非低損耗材料),必將逐步在低功率、高效率的應(yīng)用中淘汰。一種相對(duì)簡(jiǎn)單的電感損耗測(cè)試設(shè)備可以在設(shè)計(jì)的頻點(diǎn)測(cè)試電感的損耗,對(duì)比不同電感的性能。

當(dāng)設(shè)計(jì)需要選取低損耗電感時(shí),應(yīng)選取低摻雜度材料來(lái)獲得低的磁場(chǎng)強(qiáng)度參數(shù)-B。并選擇低損耗的磁芯或考慮采用多芯電線。并且,最好采用芯片公司推薦的磁性元件,或者向?qū)?/div>
業(yè)的磁材料專家請(qǐng)教,以便能夠滿足特定的需求。
 
 
 

 

要采購(gòu)磁芯么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉