【導(dǎo)讀】您是否想過如何設(shè)計(jì)一個(gè)具有高電磁兼容性(EMC)性能的精密溫度測量系統(tǒng)?本文將討論精密溫度測量系統(tǒng)的設(shè)計(jì)考慮因素,以及如何在保持測量精度的同時(shí)提高系統(tǒng)的EMC性能。我們將以RTD溫度測量為例介紹測試結(jié)果和數(shù)據(jù)分析,以便我們能夠輕松地從概念開發(fā)出原型和產(chǎn)品并走向市場。
精密溫度測量和EMC挑戰(zhàn)
溫度測量是模擬領(lǐng)域中最常用的一項(xiàng)檢測技術(shù)。許多測量技術(shù)可用來檢測環(huán)境溫度。熱敏電阻是一種小尺寸且簡單的2線制方案,具有快速響應(yīng)時(shí)間,但其非線性和有限的溫度范圍限制了其精度和應(yīng)用。RTD是最穩(wěn)定、最精確的溫度測量方法。RTD設(shè)計(jì)的難點(diǎn)在于需要外部激勵(lì)、復(fù)雜電路和校準(zhǔn)。沒有溫度測量系統(tǒng)開發(fā)經(jīng)驗(yàn)的工程師可能會氣餒。熱電偶(TC)可以提供堅(jiān)固耐用、便宜、不同測量范圍的解決方案,但完整的熱電偶測溫系統(tǒng)需要冷端補(bǔ)償(CJC)。與熱敏電阻、TC和RTD相比,新型的數(shù)字溫度傳感器可以直接通過數(shù)字接口提供校準(zhǔn)的溫度數(shù)據(jù)。精密溫度測量需要高精度溫度傳感器和精密信號鏈來構(gòu)成一個(gè)溫度測量系統(tǒng)。TC、RTD和數(shù)字溫度傳感器的精度最高。精密信號鏈器件是可以獲得的,可用來收集這些傳感器信號并將其轉(zhuǎn)換為絕對溫度。在工業(yè)領(lǐng)域,達(dá)到0.1°C的精度是我們的目標(biāo)。這種精度測量不包括傳感器誤差。表1比較了不同類型的溫度傳感器。
表1. 不同類型溫度傳感器的比較
創(chuàng)建數(shù)字溫度測量系統(tǒng)時(shí),特別是針對工業(yè)和鐵路等惡劣環(huán)境中的應(yīng)用時(shí),不僅要關(guān)注精度和設(shè)計(jì)難度,EMC性能也是保持系統(tǒng)穩(wěn)定的關(guān)鍵特性。系統(tǒng)需要額外的電路和分立器件以提高EMC性能。但是,更多的保護(hù)器件意味著更多的誤差源。因此,設(shè)計(jì)具有高檢測精度和高EMC性能的溫度測量系統(tǒng)是非常具有挑戰(zhàn)性的。溫度測量系統(tǒng)的EMC性能決定其能否在指定的電磁環(huán)境中正常工作。
ADI公司提供各種溫度測量解決方案,例如精密模數(shù)轉(zhuǎn)換器(ADC)、模擬前端(AFE)、IC溫度傳感器等。ADI AFE解決方案提供多傳感器高精度數(shù)字溫度測量系統(tǒng),支持直接TC測量、直接RTD測量、直接熱敏電阻測量和定制傳感器應(yīng)用。當(dāng)增加EMC保護(hù)器件時(shí), 一些特殊配置可以幫助保持高測量精度。圖1顯示了經(jīng)典比率式溫度測量電路和計(jì)算公式。
圖 1. 經(jīng)典比率式溫度測量電路和計(jì)算公式
以下部分介紹了溫度檢測解決方案,以便系統(tǒng)設(shè)計(jì)人員能夠?qū)崿F(xiàn)出色的EMC性能。
RTD溫度測量解決方案
以 LTC2983 溫度測量AFE為例。系統(tǒng)控制器可以通過SPI接口直接從LTC2983讀取校準(zhǔn)的溫度數(shù)據(jù),精度為0.1°C,分辨率為0.001°C。連接4線RTD時(shí),激勵(lì)電流旋轉(zhuǎn)功能可以自動消除熱電偶的寄生效應(yīng),并降低信號電路漏電流的影響?;谶@些特性,LTC2983可以加速多通道精密溫度測量系統(tǒng)的設(shè)計(jì),實(shí)現(xiàn)高EMC性能而無需復(fù)雜的電路設(shè)計(jì),讓您和您的客戶更有信心。圖2顯示了EMC保護(hù)的LTC2983溫度測量系統(tǒng)框圖。
圖 2. EMC 保護(hù)的 LTC2983 溫度測量系統(tǒng)
RTD無疑是高精度溫度測量的出色選擇,可以測量-200°C至+800°C范圍內(nèi)的溫度。100Ω和1000Ω鉑RTD最常見,但也可以由鎳或銅制成。
最簡單的RTD溫度測量系統(tǒng)是2線配置,但引線電阻會引入額外的系統(tǒng)溫度誤差。將兩個(gè)匹配的電流源施加到RTD(引線電阻應(yīng)相等),3線配置便可消除引線電阻誤差。利用高阻抗開爾文檢測直接測量傳感器,開爾文配置或4線配置便可消除平衡或不平衡的引線電阻。然而,成本將是4線配置的主要障礙,因?yàn)槠湫枰嚯娎|,特別是針對遠(yuǎn)距離溫度測量。圖3顯示了不同的RTD接線配置1。考慮到實(shí)際的客戶用例,本文選擇了3線RTD配置并測試其EMC性能。
圖 3. 不同 RTD 接線配置:(a) 2 線,(b) 3 線,(c) 4 線
2線和3線RTD傳感器還可以在PCB上使用開爾文配置。當(dāng)需要將限流電阻和RC濾波器添加到信號鏈路以保護(hù)器件的模擬輸入引腳時(shí),這些額外的電阻會引入很大的系統(tǒng)失調(diào)。例如,用4線開爾文配置取代2線保護(hù)電路可以幫助消除該失調(diào),因?yàn)榧?lì)電流不會流過這些限流電阻和RC濾波器,保護(hù)電阻引起的誤差可以忽略不計(jì)(參見圖4)。欲了解更多信息,請參閱 LTC2986數(shù)據(jù)手冊。
圖 4. 4 線配置消除額外的電阻誤差
溫度測量系統(tǒng)的穩(wěn)健性挑戰(zhàn)
與大多數(shù)溫度測量IC一樣,LTC2983可以耐受2 kV HBM ESD電平。但在工業(yè)自動化、鐵路和其他苛刻電磁環(huán)境中,電子器件需要面對更高的干擾電平和更復(fù)雜的EMC事件,例如靜電放電(ESD)、電快速瞬變(EFT)、輻射敏感性(RS)、傳導(dǎo)敏感性(CS)和浪涌等。
為了降低下游設(shè)備遭到損壞的風(fēng)險(xiǎn)并提高系統(tǒng)的魯棒性,額外的分立保護(hù)器件是必要的。
EMC事件的三要素是噪聲源、耦合路徑和接收器。如圖5所示,在該溫度測量系統(tǒng)中,噪聲源來自周圍環(huán)境。耦合路徑是傳感器電纜,LTC2983是接收器。工業(yè)自動化和鐵路應(yīng)用總是使用長傳感器電纜來檢測遠(yuǎn)程器件的溫度。傳感器電纜的長度可以是數(shù)米甚至數(shù)十米。較長的電纜導(dǎo)致耦合路徑更大,溫度測量系統(tǒng)面臨更嚴(yán)重的EMI挑戰(zhàn)。
圖 5. 溫度測量系統(tǒng)的 EMI 事件的三要素
采用TVS的系統(tǒng)級保護(hù)解決方案
瞬變電壓抑制器(TVS)和限流電阻是最常見的保護(hù)器件。選擇合適的TVS和限流電阻不僅可以提高系統(tǒng)穩(wěn)健性,還能保持系統(tǒng)的高測量性能。表2顯示了TVS器件的主要參數(shù),包括工作峰值反向電壓、擊穿電壓、最大箝位電壓和最大反向漏電流。工作峰值反向電壓必須高于最大傳感器信號,以確保系統(tǒng)正常工作。擊穿電壓不應(yīng)比信號電壓高很多,以避免產(chǎn)生很寬的無保護(hù)電壓范圍。最大箝位電壓決定TVS可以抑制的最大干擾信號電壓。反向漏電流會對系統(tǒng)貢獻(xiàn)很大的測量誤差,因此應(yīng)選擇反向漏電流盡可能小的TVS。
表2. TVS主要參數(shù)
正常工作條件下,TVS器件表現(xiàn)出很高的對地阻抗。將一個(gè)大于TVS擊穿電壓的瞬變電壓施加于系統(tǒng)輸入端時(shí),一旦TVS被擊穿,輸入端電壓就會被箝位并提供低阻抗接地路徑,將瞬變電流從輸入端轉(zhuǎn)移到地。
圖2所示為3線PT-1000保護(hù)電路。3線PT-1000通過三個(gè)相鄰?fù)ǖ肋B接到LTC2983,其受到SMAJ5.0A TVS和100Ω限流電阻的保護(hù)。限流電阻和下游電容形成低通濾波器,以盡可能多地消除輸入線路中的RF成分,使每條線路和地之間的交流信號保持平衡,并在測量帶寬上維持足夠高的輸入阻抗以避免加載信號源2。差分模式濾波器的-3 dB帶寬為7.9 kHz,共模濾波器的-3 dB帶寬為1.6 MHz。
該溫度測量系統(tǒng)依據(jù)IEC 61000-4-2、IEC 61000-4-3、IEC 61000-4-4、IEC 61000-4-5和IEC 61000-4-6標(biāo)準(zhǔn)進(jìn)行了測試。在這些測試下,系統(tǒng)必須正常工作并提供精確的溫度測量。被測傳感器是B類3線PT-1000,其使用約10 m長的屏蔽線。
表3列出了IEC 61000-4-x抗擾度測試項(xiàng)目、測試電平和系統(tǒng)受EMI事件干擾時(shí)的溫度波動。圖6顯示了測試時(shí)的輸出溫度數(shù)據(jù)曲線,其對應(yīng)于表3中的最大溫度波動。
表3. EMI測試結(jié)果
增加保護(hù)后的溫度測量精度
TVS和限流電阻有助于保護(hù)溫度測量系統(tǒng)不受EMC影響。箝位電壓越低的TVS,越能保護(hù)敏感電路。但反過來,它們可能產(chǎn)生系統(tǒng)誤差。為了應(yīng)對這種情況,我們必須使用具有更高擊穿電壓的TVS,因?yàn)楦叩膿舸╇妷阂馕吨谡9ぷ麟妷合侣╇娏鞲?。TVS漏電流越低,則給系統(tǒng)增加的誤差越小。
圖 6. 測試時(shí)的輸出溫度數(shù)據(jù)曲線
表4. Littelfuse SMAJ5.0A TVS的電氣特性
考慮這些因素,我們使用了一個(gè)Littelfuse SMAJ5.0A TVS(可以在大多數(shù)電子元器件經(jīng)銷商那里買到)和一個(gè)精度為±0.1%的100Ω限流電阻來保護(hù)系統(tǒng),避免引入任何顯著的測量誤差。
為了實(shí)現(xiàn)高測量精度,我們使用精密電阻矩陣來替換PT-1000傳感器并模擬溫度變化。該精密電阻矩陣已利用Keysight Technologies 3458A萬用表進(jìn)行了校準(zhǔn)。
為了減輕消除匹配引線電阻誤差的困難,我們使用4線配置來評估系統(tǒng)的精度性能。這更有利于消除傳感器誤差。
為了更準(zhǔn)確地計(jì)算系統(tǒng)誤差,我們需要使用與LTC2983相同的標(biāo)準(zhǔn)將電阻值轉(zhuǎn)換為溫度。傳感器制造商發(fā)布的溫度查找表是最準(zhǔn)確的轉(zhuǎn)換方法。但是,將每個(gè)溫度點(diǎn)寫入處理器的存儲器中是不明智的。因此,我們使用以下公式來計(jì)算溫度結(jié)果3。
當(dāng)T > 0°C時(shí),公式為:
計(jì)算對應(yīng)于電阻值的溫度:
當(dāng)T ≤ 0°C時(shí),公式為:
溫度通過多項(xiàng)式擬合得到:
其中:
T為RTD溫度(°C)。
RRTD(T)為RTD電阻(Ω)。
R0 為RTD在0°C時(shí)的電阻(R0 = 1000 Ω)。
A = 3.9083 × 10–3
B = –5.775 × 10–7
C = –4.183 × 10–12
圖7顯示,在-134°C至+607°C的溫度范圍內(nèi),總系統(tǒng)誤差不超過±0.4°C。與圖9(顯示了LTC2983對RTD溫度測量的誤差貢獻(xiàn))相比,附加保護(hù)器件增加了大約±0.3°C的系統(tǒng)誤差,尤其是TVS漏電流??梢钥吹剑S著溫度升高,系統(tǒng)誤差增加。這就涉及到TVS的I-V曲線特性。
系統(tǒng)誤差可計(jì)算如下
其中:
Terror 為LTC2983溫度測量系統(tǒng)的總輸出誤差(°C)。
Tcal 為利用精密電阻計(jì)算的溫度(°C),已利用Keysight Technologies 3458A進(jìn)行校準(zhǔn)。
TLTC2983 是LTC2983輸出溫度(°C)。
圖8說明,系統(tǒng)總峰峰值噪聲不超過±0.01°C,此結(jié)果符合數(shù)據(jù)手冊規(guī)格。
圖 7. 系統(tǒng)誤差與溫度的關(guān)系
圖 8. 系統(tǒng)峰峰值噪聲與溫度的關(guān)系
圖 9. LTC2983 對 RTD 溫度測量的誤差貢獻(xiàn)
10. 激勵(lì)電流旋轉(zhuǎn)配置:(a) 正向激勵(lì)流,(b) 反向激勵(lì)流
TVS誤差貢獻(xiàn)和優(yōu)化配置
TVS的I-V曲線特性可以從器件的數(shù)據(jù)手冊中找到。然而,大多數(shù)TVS制造商僅提供器件參數(shù)的典型值,而不是計(jì)算TVS在特定電壓下的誤差貢獻(xiàn)(尤其是漏電流誤差)所需的全部I-V數(shù)據(jù)。
本應(yīng)用中使用Littelfuse SMAJ5.0A TVS。測試一些樣品之后,我們發(fā)現(xiàn)漏電流在1 V反向電壓約為1μA,遠(yuǎn)小于TVS數(shù)據(jù)手冊給出的最大反向漏電流。這種漏電流會產(chǎn)生重大系統(tǒng)誤差。但是,如果使能LTC2983的激勵(lì)電流旋轉(zhuǎn),則會大大減少漏電流誤差效應(yīng)。圖10顯示了激勵(lì)電流旋轉(zhuǎn)配置和TVS漏電流流動。
當(dāng)Rsense與流過RTD的激勵(lì)電流相同時(shí),RTD的電阻RT可以表示為4:
當(dāng)對正向激勵(lì)流使用激勵(lì)電流旋轉(zhuǎn)配置時(shí)(如圖10(a)所示),RTD電阻RRTD1計(jì)算如下:
其中:
Rsense 為檢測電阻的實(shí)際電阻值
RRTD 為測量周期中RTD的實(shí)際電阻值
Vsense1 為檢測電阻處的實(shí)測電壓值
VRTD1 為正向激勵(lì)流周期中RTD的實(shí)測電壓值,如圖10(a)所示。
RRTD1 為正向激勵(lì)流周期中RTD的計(jì)算值
當(dāng)對反向激勵(lì)流使用激勵(lì)電流旋轉(zhuǎn)配置時(shí)(如圖10(b)所示),RTD電阻RRTD2計(jì)算如下:
其中:
Vsense2 為檢測電阻的實(shí)測電壓值。
VRTD2 為反向激勵(lì)流周期中RTD的實(shí)測電壓值,如所示圖10(b)所示。
RRTD2 為反向激勵(lì)流周期中RTD的計(jì)算值
根據(jù)TVS測量數(shù)據(jù),在2 V反向電壓下,最大漏電流和最小漏電流之差平均約為10%。四個(gè)TVS的位置和匹配程度可能會引起相當(dāng)大的系統(tǒng)誤差。為了顯示誤差最大的情況,我們可以假設(shè)ITVS為平均漏電流, ITVS1 = ITVS2 = 0.9 × ITVS,而 ITVS3 = ITVS4 = 1.1 × ITVS。
如果不使用激勵(lì)電流旋轉(zhuǎn)配置,RRTD1或RRTD2將包括最大TVS誤差貢獻(xiàn)。
為誤差因子。
使用激勵(lì)電流旋轉(zhuǎn)配置時(shí),最終計(jì)算結(jié)果為:
當(dāng)Error(RRTDROT) = min {Error(RRTD1), Error(RRTD2)}時(shí),Error (RRTDROT)將等于Error (RRTD1), 或者Error(RRTDROT)將等于Error(RRTD2)。根據(jù)公式13至公式18,當(dāng)Iexc = 6 × ITVS,Error (RRTDROT)將等于min {Error(RRTD1), Error(RRTD2)}。當(dāng)Iexc = 6 × ITVS時(shí),由于TVS漏電流,系統(tǒng)的精度將會降低16.7%。
根據(jù)配置和測試結(jié)果,Iexc > 6 × ITVS,因此
通常,Iexc > 100 × ITVS。圖11顯示了系統(tǒng)誤差,其中:
RRTDROT為采用激勵(lì)電流旋轉(zhuǎn)時(shí)的最終RTD電阻計(jì)算結(jié)果。
Error(RRTDROT) 在使用激勵(lì)電流旋轉(zhuǎn)配置時(shí)的TVS誤差貢獻(xiàn),單位為°C。
Error(RRTD1) 和 Error(RRTD2) 是不使用旋轉(zhuǎn)配置時(shí)的TVS誤差貢獻(xiàn),單位為°C。
上面的推導(dǎo)告訴我們,激勵(lì)電流旋轉(zhuǎn)配置可以減少TVS漏電流的誤差貢獻(xiàn)。以下測試結(jié)果證實(shí)了我們的斷言。
圖11顯示了不同激勵(lì)電流模式和TVS配置的系統(tǒng)誤差。如圖所示,當(dāng)不使用TVS時(shí),旋轉(zhuǎn)和非旋轉(zhuǎn)配置的系統(tǒng)精度大致相同。然而,使能激勵(lì)電流旋轉(zhuǎn)會自動消除寄生熱電偶效應(yīng),對此的更詳細(xì)說明請參閱 LTC2983數(shù)據(jù)手冊。使用TVS保護(hù)系統(tǒng)時(shí),總系統(tǒng)誤差會增加。但是,激勵(lì)電流旋轉(zhuǎn)配置可以顯著降低TVS漏電流的誤差影響,從而有助于在大部分溫度測量范圍內(nèi)實(shí)現(xiàn)與非TVS保護(hù)系統(tǒng)類似的精度水平。與沒有TVS的系統(tǒng)相比,額外的誤差是由TVS器件間差異貢獻(xiàn)的。
圖 11. 系統(tǒng)誤差與不同硬件和軟件配置的關(guān)系
結(jié)論
溫度測量系統(tǒng)設(shè)計(jì)常被認(rèn)為不是艱巨的任務(wù)。然而,對于大多數(shù)系統(tǒng)設(shè)計(jì)人員而言,開發(fā)高度精確且穩(wěn)健的溫度測量系統(tǒng)是一個(gè)挑戰(zhàn)。LTC2983智能數(shù)字溫度傳感器可以幫助戰(zhàn)勝這一挑戰(zhàn),開發(fā)出可以快速推向市場的產(chǎn)品。
● 這種受保護(hù)的LTC2983溫度測量系統(tǒng)具有±0.4°C的系統(tǒng)精度。測量誤差包括LTC2983誤差、TVS?限流電阻誤差和PCB誤差貢獻(xiàn)。
● LTC2983旋轉(zhuǎn)激勵(lì)電流配置可以顯著減少保護(hù)器件的漏電流誤差效應(yīng)。
● LTC2983溫度測量系統(tǒng)可以在常見保護(hù)器件的加持下提供高EMC性能。有關(guān)EMI測試結(jié)果,請參閱表3。
本文給出了某些特定配置的精度和EMC性能測試結(jié)果。您可以選擇不同的TVS器件和限流電阻來獲得不同的測量精度和EMC性能,以滿足您的生產(chǎn)需求。
參考電路
References
1 Logan Cummings。 “ Colm Slattery、Derrick Hartmann和Li Ke” 。Journal of Analog Innovation,第27卷第1號。凌力爾特,2017年4月。
2 Colm Slattery、Derrick Hartmann和Li Ke。 “利用PLC評估板 簡化工業(yè)過程控制系統(tǒng)設(shè)計(jì)”。EE Times,2009年8月。
3 CN0383:采用低功耗、精密、24位Σ-Δ ADC的全集成式2線、3線或4線RTD測量系統(tǒng)。ADI公司,2020年10月。
4 Tom Domanski。 “利用LTC2983溫度轉(zhuǎn)比特IC優(yōu)化RTD溫度測量的檢測電阻成本和精度” 。ADI公司。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
功率半導(dǎo)體的進(jìn)步實(shí)現(xiàn)3級直流快速充電,解決電動汽車的里程焦慮
應(yīng)對國產(chǎn)化需求的5G電源用隔離IC一站式解決方案