【導(dǎo)讀】本文提出了一種預(yù)測IC熱性能的方法。這些信息對于汽車及其它高溫環(huán)境下使用的PMIC (電源管理IC)尤為有用。通過分析熱性能,我們設(shè)計了一種數(shù)學(xué)模型用于仿真芯片內(nèi)部的瞬態(tài)溫度。我們引入了關(guān)于熱性能的物理定律,并用于評估IC的發(fā)熱模型?;谶@些分析,我們提出了一種等效的無源RC網(wǎng)絡(luò),用于仿真IC瞬態(tài)熱性能的模型。為了闡述這一分析的應(yīng)用,我們設(shè)計了一個用于LED驅(qū)動(MAX16828)的RC網(wǎng)絡(luò)。最后總結(jié)了這種方法的使用和有效性,并提出了加速構(gòu)建RC模型的途徑。
設(shè)計人員通常需要了解IC的熱性能,特別是汽車應(yīng)用中的PMIC (電源管理IC)。當(dāng)實際IC工作在高溫環(huán)境(例如+125°C)時,是否會觸發(fā)熱關(guān)斷電路或超出產(chǎn)品的安全工作溫度范圍? 如果沒有明確的分析方法,我們就無法確切地回答這一問題。因此,在定義一款新IC時,我們需要一種根據(jù)復(fù)雜的內(nèi)部功能預(yù)測熱關(guān)斷或管芯溫度過高的方法。
直流工作模式下,往往能夠利用數(shù)據(jù)資料提供的參數(shù)確定結(jié)溫,例如θJA (熱阻)和θJC (結(jié)溫?zé)崽匦?1。然而,為了預(yù)測直流模式以外的結(jié)溫峰值達(dá)到多高(例如,由PWM信號驅(qū)動的功率MOSFET,用于控制LED或開關(guān)穩(wěn)壓器),需要了解瞬態(tài)熱特性數(shù)據(jù)。盡管該數(shù)據(jù)非常有用,但通常情況下數(shù)據(jù)資料并未提供該數(shù)據(jù)。您可能還需要了解芯片在給定功率耗散水平下能夠工作多長時間而不發(fā)生故障。這個問題也很難回答。
本文解決了利用功耗和環(huán)境溫度預(yù)測芯片結(jié)溫的問題,芯片結(jié)溫是時間函數(shù)。本文首先引入分析方法所依據(jù)的物理定律。然后將IC系統(tǒng)定義為一個復(fù)雜的分層熱體模型進(jìn)行討論。進(jìn)而對熱體模型進(jìn)行理論分析,并得出瞬態(tài)熱性能的表達(dá)式。本文根據(jù)這些公式提出了一種等效的RC無源網(wǎng)絡(luò),用于表示IC的熱特性。最后,為了證明這一分析方法的有效性和準(zhǔn)確性,文章給出了具有PWM調(diào)光功能的高電壓線性HB LED (高亮度LED)驅(qū)動電路MAX16828的實驗結(jié)果。
熱力學(xué)定律
對于任何物體,均可通過以下兩個基本定律得到溫度與時間的關(guān)系式。
牛頓冷卻定律:
(式1)
其中:
- TB為物體溫度。
- TA為環(huán)境溫度。
- kA為比例常數(shù)(> 0)。
- t為時間。
根據(jù)能量守恒定律:
(式2)
其中:
- P為熱源產(chǎn)生或傳遞給熱源的恒定功率。
- m為發(fā)熱體質(zhì)量。
- c為特定物體的熱容量。
結(jié)合這兩個定律,我們得到:
(式3)
IC的數(shù)據(jù)資料通常列出了封裝的熱特性數(shù)據(jù),例如θJA。我們利用該數(shù)據(jù)可以分析封裝的穩(wěn)態(tài)熱平衡,從而檢查是否滿足式3:
穩(wěn)態(tài)時式
因此:
P = mckA(TB - TA) (式4)
可將式4轉(zhuǎn)換為:
(式5)
其中:
- θBA為物體至環(huán)境的熱阻。
- TB為封裝內(nèi)溫度。
- TA為外部環(huán)境溫度。
故:
(式6)
將芯片定義為一個熱系統(tǒng)
清晰地定義系統(tǒng)非常重要,因為熱分析結(jié)果依賴于這一定義。從安裝在PCB的芯片橫截面(圖1),我們可以看到管芯到環(huán)境通道至少有三種不同材料:管芯本身、環(huán)氧樹脂鑄模和封裝。根據(jù)主要熱源的位置不同,熱模型基于兩種熱流動模式之一:從外部熱源至管芯(當(dāng)外部熱源是主要熱源時)和從管芯至外部環(huán)境(當(dāng)管芯為主要熱源時)。我們就這兩種模式分別進(jìn)行討論。
圖1. 安裝在PCB上的芯片橫截面,顯示了管芯和環(huán)境之間的材料層次。
從外部熱源至芯片的熱流動
考慮圖2所示系統(tǒng),該圖給出了一個均勻物體從電源獲得能量(熱量)并向外部環(huán)境釋放能量的示意圖。
圖2. 該熱模型說明了從外部電源至芯片(組件1)然后再返回到環(huán)境的熱流動。
熱量通過封裝和鑄模復(fù)合物到達(dá)內(nèi)部管芯。所以,該系統(tǒng)也模擬了熱源處于封裝外部時芯片的瞬態(tài)熱特性。由于管芯具有很多金屬,封裝熱阻通常比管芯本身高得多。因此,管芯溫度隨著封裝溫度的變化而改變,幾乎沒有滯后,使芯片看起來像個整體。我們可以利用式3定義這一整體系統(tǒng)。求解TB,得到:
(式7)
其中,ko為積分常數(shù),由初始條件求解得到。一般而言,該式對于熱源處于芯片外部情況下定義芯片的瞬態(tài)熱特性非常有用。
可以通過一個實例解釋這一模型。確定芯片的瞬態(tài)熱特性,其初始溫度為Ti,式7中帶入t = 0,TB = Ti:
(式8)
因此:
(式9)
考慮Ti = TA的特殊情況:
(式10)
利用式6,可將式9和式10改寫為:
(式11)
(式12)
式11和式12在熱源處于封裝外部情況下,對于預(yù)測芯片溫度(無論是封裝還是管芯)非常有用。需要耗散大量熱量的大電流MOSFET附近就是一個熱源特例。
已知kA和θJA,即可計算出不同時間的溫度。或者,如果P為時間的復(fù)合函數(shù),即可利用以上公式作為時間仿真來評估溫度,并利用MATLAB®軟件編程繪制溫度隨時間變化的函數(shù)。
θJA由數(shù)據(jù)資料提供。但是,如果某項配置條件與JEDEC標(biāo)準(zhǔn)規(guī)定不同,利用公布的θJA值進(jìn)行計算會產(chǎn)生誤差。JEDEC標(biāo)準(zhǔn)51-3節(jié)指出:“值得強(qiáng)調(diào)的是,利用這些測試板測試得到的數(shù)值不能用于直接預(yù)測任何具體應(yīng)用系統(tǒng)的性能,只能用于封裝之間的比較”2。所以,為了正確估算溫度,應(yīng)該針對原型開發(fā)板測量θJA值,或按照下列說明直接估算。
從管芯至環(huán)境的熱流動
考慮圖3所示的三體系統(tǒng)(與芯片相似),在管芯處產(chǎn)生熱量并通過環(huán)氧樹脂和封裝將熱量耗散至外部環(huán)境。組件1為管芯,組件2為環(huán)氧樹脂,組件3為芯片封裝。
圖3. 三體模型與圖2所示模型的比較。此時,管芯產(chǎn)生的熱流動更為復(fù)雜。
為了求解該系統(tǒng)中的θJA,我們必須為三個物體定義公式。
組件1:
(式13)
組件2:
(式14)
組件3:
(式15)
其中:
- TB1、TB2和TB3分別是組件1、2和3的瞬時溫度。
- P12是以熱形式從組件1傳導(dǎo)至組件2的功率。
- P23是以熱形式從組件2傳導(dǎo)至組件3的功率。
- PG是組件1直接產(chǎn)生的功率,或直接傳導(dǎo)至組件1的功率。
管芯產(chǎn)生的功率(PG)減去管芯吸收的功率,得到:
(式16)
環(huán)氧樹脂接收到的功率減去環(huán)氧樹脂吸收的功率,得到:
(式17)
將式16和式17代入式13、式14和式15:
(式18)
(式19)
(式20)
從式18、式19和式20求解三體系統(tǒng)比較復(fù)雜,但利用拉普拉斯變換可以簡化計算。求解公式為:
TB1 = T1em1t + T2em2t + T3em3t + TA + (θ12 + θ23 + θ3A)PG (式21)
其中:
- θ12為組件1至組件2的熱阻。
- θ23為組件2至組件3的熱阻。
- θ3A為組件3至環(huán)境的熱阻。
- T1、T2和T3為積分常數(shù)。
- m1、m2和m3為k1、k2和k3的函數(shù)。
管芯產(chǎn)生功耗時,式21能夠以非常準(zhǔn)確的方式預(yù)測管芯溫度。然而,使用該式時,我們必須知道所有積分常數(shù)以及m1、m2和m3,它們?yōu)閺?fù)雜函數(shù),求解非常困難。為了避開這種困難操作,我們利用一個工具求解不同方程:SPICE。
RC網(wǎng)絡(luò)模型瞬態(tài)熱特性的微分方程
現(xiàn)在,我們提出一個類似的微分方程,用作電路建模,我們對電路進(jìn)行仿真,并通過仿真得到溫度讀數(shù)。
微分方程18、19和20可通過代表管芯產(chǎn)生功率的RC簡單網(wǎng)絡(luò)(圖4)進(jìn)行模擬。
圖4. 該RC網(wǎng)絡(luò)用于仿真內(nèi)部產(chǎn)生熱量時芯片的瞬態(tài)熱特性
圖4中,電容的初始電壓分別表示管芯(C1)、環(huán)氧樹脂(C2)和封裝(C3)的溫度。VA表示環(huán)境溫度,IS (流入電容C1的電流)表示管芯產(chǎn)生的功率。表示電容電壓的差分方程為:
(式22)
(式23)
(式24)
這三個方程式對應(yīng)于式18、式19和式20,用以下變量替換:
電容電壓與管芯、環(huán)氧樹脂和封裝的溫度直接相關(guān)。任何SPICE工具包均可方便地仿真RC電路。若已知具體芯片模型的R1、R2、R3、C1、C2和C3的適當(dāng)參數(shù),即可對該電路進(jìn)行仿真,并直接以電容C1電壓的形式讀取管芯溫度。
現(xiàn)在,我們可以確定具體芯片的無源元件值(R1、R2、R3、C1、C2和C3)。通過測量管芯最終的穩(wěn)態(tài)溫度,利用式5 (以下改寫為式25)得到系統(tǒng)的熱阻(θJA):
(式25)
其中:
- TJ為管芯的穩(wěn)態(tài)結(jié)溫。
- TA為環(huán)境溫度。
- PG為管芯的耗散功率。
工作在與式25相同的耗散功率(PG)下,從時間0開始,不同時間測量的管芯溫度可以構(gòu)成反映管芯瞬時溫度變化的一組數(shù)據(jù)。然后,根據(jù)以下約束條件,對于實測數(shù)據(jù)進(jìn)行曲線擬合,可以確定R1、R2、R3、C1、C2和C3值:
θJA = R1 + R2 + R3 (式26)
測量管芯溫度
有幾種測量集成電路管芯溫度的方法3。這里,我們將采用ESD二極管正向壓降測量法確定芯片溫度,因為這一方法簡單且不會引入大的誤差。但是,為了保證測量誤差在可以接受的范圍內(nèi),需要針對具體芯片謹(jǐn)慎選擇管芯溫度的測量技術(shù)。實踐證明,遵循以下原則非常關(guān)鍵3。
確保選擇用于測量的ESD二極管沒有很大的寄生電阻,也不會流過大電流,以免造成二極管壓降讀數(shù)偏差。最好與IC制造商討論確定內(nèi)部焊線和金屬電阻的最大估算值。
還要確定ESD二極管接近芯片熱源或處于實際考慮管芯溫度的區(qū)域內(nèi)。這種配置能夠更好地估算溫度,獲得更準(zhǔn)確的結(jié)果。
若選擇FET的導(dǎo)通電阻估算溫度指示,請確保FET在測試溫度下完全導(dǎo)通,并處于最小壓降。
利用ESD二極管正向壓降進(jìn)行測量時,需要芯片上的二極管作用了正向偏壓,對其電壓進(jìn)行測量。大多數(shù)芯片很容易做到這點(diǎn),將ESD二極管連接在引腳與電源電壓之間即可。因為實測數(shù)據(jù)為二極管壓降,還必須考慮二極管電壓與溫度之間的關(guān)系式4。
二極管電壓以接近恒定的斜率下降,偏差可以忽略不計。如果繪制隨溫度變化的曲線,可以得到類似于圖5的結(jié)果。
圖5. 固定電流偏置下,二極管正向壓降隨溫度的變化關(guān)系。
圖5中,TA為環(huán)境溫度,VDA為環(huán)境溫度下的二極管電壓,由此,我們得到曲線上的一個點(diǎn)及斜率。在溫控爐內(nèi)不同溫度點(diǎn)對二極管電壓進(jìn)行測量,即可得到斜率?;虿捎靡粋€常見數(shù)值:2mV/K,該值在各種二極管電流范圍都有效,誤差很小4。這些數(shù)值同樣適用其它芯片,但出于準(zhǔn)確度的考慮,最好測量對應(yīng)于二極管偏置電流的斜率。至此,可以利用二級管電壓表示任何溫度:
(式27)
其中:
- T為二極管電壓VD對應(yīng)的溫度。
- s為曲線斜率(s < 0)。
將該表達(dá)式代入式11和式12,得到下式:
VD = sθJAP + VDA + (VDi - sθJAP - VDA)e-kAt (式28)
VD = VDA + sθJAP(1 - e-kAt) (式29)
代入式18、式19和式20,得到:
(式30)
(式31)
(式32)
為了恰當(dāng)?shù)貙C網(wǎng)絡(luò)用于實測二極管電壓瞬態(tài)數(shù)據(jù)的曲線擬合,我們只需將電流源的幅值設(shè)置為:
lS = sPG (式33)
由于s < 0,通過將電流源反向并將其幅值設(shè)置為|sPG|即可實現(xiàn)式33。
RC網(wǎng)絡(luò)的實驗測定和驗證
我們可利用以上得出的方程式和線性LED驅(qū)動器(例如MAX16828/MAX16815)驗證RC仿真模型的實際應(yīng)用。這些芯片工作在最高40V電壓,幾乎不需要外部元件,MAX16828能夠為一串LED供電,最大電流可達(dá)200mA (圖6)。MAX16815與MAX16828引腳兼容,功能相似,但最大輸出電流可達(dá)100mA,而非200mA。
圖6. MAX16815/MAX16828 HBLED驅(qū)動器的典型應(yīng)用電路
兩款LED驅(qū)動器都適合于汽車應(yīng)用,例如,用于側(cè)燈、汽車尾燈、背光和指示燈。如果內(nèi)部MOSFET需要承受較大電流,而且具有較大壓差時,MAX16828將需要耗散相當(dāng)可觀的熱量(LED串的正向電壓較低時,MOSFET會發(fā)生這種情況)。RSENSE兩端的電壓調(diào)節(jié)在200mV ±3.5%,該電阻用于設(shè)置LED電流。芯片的DIM輸入為LED提供較寬范圍的PWM調(diào)光,因為它能夠承受高壓,可以直接將其連接到IN引腳。
為了直接顯示管芯溫度,我們對連接在DIM和IN引腳之間內(nèi)部ESD二極管的正向偏壓進(jìn)行測量。該二極管偏置在大約100µA,其正向電壓變化率為2mV/K (這點(diǎn)可通過溫控爐對器件加熱進(jìn)行驗證),實驗設(shè)置如圖7所示。5V電源和56kΩ電阻提供100µA偏置電流,為ESD二極管提供正向偏置。驅(qū)動器設(shè)置為可向LED提供200mA的輸出電流。
圖7. 圖中所示測試裝置采用片上ESD二極管測量管芯的瞬時溫度,*EP表示裸焊盤。
這種狀態(tài)下,元件承載大量電流,ESD二極管測量處于測量通路。因此,由于焊接線和內(nèi)部金屬電阻的影響,會產(chǎn)生一定誤差。根據(jù)內(nèi)部布局和焊接線長度計算,估計最差情況下的寄生電阻為50mΩ。200mA下,該寄生電阻會在二極管讀數(shù)上產(chǎn)生大約±10mV (最大)的誤差,對應(yīng)的溫度測量精度誤差大于±5°C。此外,管芯ESD二極管放置在靠近片上功率MOSFET和熱保護(hù)電路處。這種配置可使二極管更準(zhǔn)確地表示該區(qū)域的溫度。
系統(tǒng)定義1
接下來的部分介紹如何利用測試裝置,采集代表瞬時熱特性的二極管電壓,用于上述式7和式21的系統(tǒng)定義方程式。
為了計算kA和θJA (代入式11),采用熱風(fēng)槍加熱芯片。因為我們并不希望芯片內(nèi)部產(chǎn)生熱量,所以將芯片斷電。利用熱風(fēng)槍加熱元件會使封裝、管芯的溫度上升??衫檬静ㄆ鳒y量二極管的電壓,以監(jiān)測管芯的溫度變化(圖8)。
圖8. 該二極管電壓瞬態(tài)值包括表示外部熱風(fēng)槍加熱(下降曲線)和移開熱風(fēng)槍后冷卻(上升曲線)的指數(shù)曲線
當(dāng)芯片加熱時,二極管電壓按照指數(shù)規(guī)律迅速下降,與公式預(yù)測結(jié)果一致。接近曲線中間位置時,關(guān)閉熱槍,使封裝和管芯開始冷卻。二極管電壓又按照指數(shù)規(guī)律上升。
我們并不確切知道有多少熱量從熱風(fēng)槍傳遞到芯片。因此,為了消除該未知數(shù),我們首先將式28調(diào)整為僅擬合曲線(圖8)的上升部分(冷卻)。這種曲線擬合使我們能夠估算kA的最佳值。冷卻期間沒有熱功率傳遞至封裝,封裝僅僅進(jìn)行冷卻,P = 0。因此,式28可簡化為:
VDB = VDA + (VDi - VDA)e-kAt (式34)
我們已知VDA (室溫下的初始測量值為643mV)和VDi (t = 0時的參考讀數(shù))值。為了確定kA,我們必須調(diào)整方程式,使其包括上升曲線的一對讀數(shù),將得到kA = -0.0175。圖9所示為采用上述kA值時的讀數(shù)(二極管電壓單位為mV,與以秒為單位的時間的對應(yīng)關(guān)系)和式34的波形。
圖9. 式34,擬合至一對二極管電壓測量值,非常接近芯片經(jīng)過熱風(fēng)槍加熱后再冷卻的二極管測量值。
正如我們在圖9中看到的那樣,式34與kA = -0.0175時的測量數(shù)據(jù)非常接近。為了驗證我們公式的正確性,我們嘗試?yán)冕槍A測定的值擬合公式28的下降曲線,方程式精確擬合(圖10)。因此,我們看到針對系統(tǒng)定義1所討論系統(tǒng)的式34與實驗數(shù)據(jù)非常接近。
圖10. 式28擬合曲線與曲線下降部分(加熱)的二極管電壓測量值非常接近
系統(tǒng)定義2
驗證系統(tǒng)2的式30、式31和式32更加困難。必須在管芯產(chǎn)生熱量,利用二極管正向電壓測量管芯溫度,并將溫度值與提出的RC網(wǎng)絡(luò)的C1電壓仿真數(shù)據(jù)進(jìn)行擬合。這項工作可利用MATLAB編程實現(xiàn)。
在已知整個芯片初始溫度的情況下,記錄不同時間的瞬態(tài)熱特性非常重要。按照這種方式,我們還可以求解RC網(wǎng)絡(luò)的初始電容電壓。利用相同的測試裝置(參見圖7),接通電流通道并在示波器上采集二極管電壓(圖11)。
圖11. MAX16828內(nèi)部二極管的正向電壓瞬態(tài)值,表明片上MOSFET已經(jīng)導(dǎo)通并產(chǎn)生熱量。
記錄三種不同耗散功率下的瞬態(tài)電壓,用一條曲線模擬這些數(shù)據(jù)。圖12所示曲線是第一組數(shù)據(jù)的擬合結(jié)果,此時功耗為1.626W;圖13所示波形是實測數(shù)據(jù)與仿真數(shù)據(jù)的比較。同樣,圖14所示波形說明了RC網(wǎng)絡(luò)對第二組讀數(shù)(耗散功率為2.02W)的仿真;圖15所示波形說明了對第三組讀數(shù)(耗散功率為1.223W)的仿真情況。
圖12. 采用圖示元件值,該RC網(wǎng)絡(luò)能夠仿真由管芯產(chǎn)生熱量時芯片的瞬態(tài)熱特性。
圖13. 當(dāng)管芯耗散功率為1.626W時,芯片加熱曲線的實測結(jié)果與擬合曲線的比較。
圖14. 當(dāng)管芯耗散功率為2.02W時,芯片加熱曲線的實測結(jié)果與擬合曲線的比較。
圖15. 當(dāng)管芯耗散功率為1.223W時,芯片加熱曲線的實測結(jié)果與擬合曲線的比較。
實驗結(jié)果表明實測結(jié)果與理論模型非常吻合。一旦針對具體芯片構(gòu)建RC網(wǎng)絡(luò)模型,這種模型將對仿真IC的瞬態(tài)溫度非常有用。模型亦可用于類似尺寸的芯片,確定其定義階段的熱特性。利用這種方式可以表示芯片的工作范圍限制,反過來,這些信息也能夠幫助定義芯片的工作模式,以避免過熱。
結(jié)論
本文介紹了通過RC網(wǎng)絡(luò)仿真芯片熱特性的方法,然后可以利用SPICE工具方便地進(jìn)行仿真。以下方法有助于提高該模型的精度:
獲取極端功耗條件和中等水平下的數(shù)據(jù)。將RC網(wǎng)絡(luò)同時擬合到三個不同狀況,使模型復(fù)合絕大多數(shù)實際功耗的要求。
通過在不同環(huán)境溫度下采集數(shù)據(jù)提高模型精度。
必要時,可以通過實驗提高精度,但大多數(shù)應(yīng)用并不需要知道精確溫度。應(yīng)用和設(shè)計工程師以及系統(tǒng)設(shè)計人員會從這種測試方法獲得很大益處。為了得到更詳細(xì)的芯片信息,制造商可以為其IC構(gòu)建RC網(wǎng)絡(luò),并利用芯片的相應(yīng)SPICE模型進(jìn)行驗證。
參考文獻(xiàn)
"Package Thermal Resistance Values (Theta JA and Theta JC) for Dallas Semiconductor Temperature Sensors," Maxim application note 3930.
"Package Thermal Characteristics," Actel Corporation application note AC220, (February 2005).
Rako, Paul, "Hot, cold, and broken: Thermal-design techniques," EDN online (3/29/2007).
Pease, Bob, National Semiconductor, "The Best of Bob Pease. What''s All This VBE Stuff, Anyhow?" (11/5/2008).
本文來源于Maxim。
推薦閱讀: