你的位置:首頁(yè) > 電路保護(hù) > 正文

電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

發(fā)布時(shí)間:2024-07-11 責(zé)任編輯:lina

【導(dǎo)讀】本文提出一個(gè)用尺寸緊湊、高成本效益的DC/AC逆變器分析碳化硅功率模塊內(nèi)并聯(lián)裸片之間的熱失衡問(wèn)題的解決方案,該分析方法是采用紅外熱像儀直接測(cè)量每顆裸片在連續(xù)工作時(shí)的溫度,分析兩個(gè)電驅(qū)逆變模塊驗(yàn)證,該測(cè)溫系統(tǒng)的驗(yàn)證方法是,根據(jù)柵源電壓閾值選擇每個(gè)模塊內(nèi)的裸片。我們將從實(shí)驗(yàn)數(shù)據(jù)中提取一個(gè)數(shù)學(xué)模型,根據(jù)Vth 選擇標(biāo)準(zhǔn),預(yù)測(cè)當(dāng)逆變器工作在電動(dòng)汽車常用的電壓和功率范圍內(nèi)時(shí)的熱不平衡現(xiàn)象。此外,我們還能夠延長(zhǎng)測(cè)試時(shí)間,以便分析在電動(dòng)汽車生命周期典型電流負(fù)荷下的芯片行為。測(cè)試結(jié)果表明,根據(jù)閾壓為模塊選擇適合的裸片可以優(yōu)化散熱性能,減少熱失衡現(xiàn)象。

摘要


本文提出一個(gè)用尺寸緊湊、高成本效益的DC/AC逆變器分析碳化硅功率模塊內(nèi)并聯(lián)裸片之間的熱失衡問(wèn)題的解決方案,該分析方法是采用紅外熱像儀直接測(cè)量每顆裸片在連續(xù)工作時(shí)的溫度,分析兩個(gè)電驅(qū)逆變模塊驗(yàn)證,該測(cè)溫系統(tǒng)的驗(yàn)證方法是,根據(jù)柵源電壓閾值選擇每個(gè)模塊內(nèi)的裸片。我們將從實(shí)驗(yàn)數(shù)據(jù)中提取一個(gè)數(shù)學(xué)模型,根據(jù)Vth 選擇標(biāo)準(zhǔn),預(yù)測(cè)當(dāng)逆變器工作在電動(dòng)汽車常用的電壓和功率范圍內(nèi)時(shí)的熱不平衡現(xiàn)象。此外,我們還能夠延長(zhǎng)測(cè)試時(shí)間,以便分析在電動(dòng)汽車生命周期典型電流負(fù)荷下的芯片行為。測(cè)試結(jié)果表明,根據(jù)閾壓為模塊選擇適合的裸片可以優(yōu)化散熱性能,減少熱失衡現(xiàn)象。


I.前言


電驅(qū)逆變器是業(yè)界公認(rèn)的混動(dòng)車和電動(dòng)車的核心部件,從最初的幾十千瓦,到現(xiàn)在的數(shù)百千瓦,它們對(duì)額定功率的要求越來(lái)越高。中高功率逆變器要求功率模塊的標(biāo)稱電流高達(dá)數(shù)百至數(shù)千安培。只能通過(guò)并聯(lián)多個(gè)裸片,有時(shí)并聯(lián)多個(gè)子模塊(在同一個(gè)封裝基板上集成多個(gè)裸片),甚至多個(gè)功率模塊,才能達(dá)到如此高的電流[1]。


在這種情況下,重量、尺寸和成本是制約功率模塊設(shè)計(jì)的主要因素。最初使用IGBT設(shè)計(jì)的三相半橋逆變器解決方案已經(jīng)非常普及,目前采用性能更高的碳化硅功率模塊設(shè)計(jì)逆變器是一種新趨勢(shì)。功率模塊設(shè)計(jì)通常是熱性能和電性能之間的權(quán)衡與折衷。設(shè)計(jì)良好的功率模塊,能夠在上下橋臂開(kāi)關(guān)管之間以及開(kāi)關(guān)管內(nèi)部裸片之間均衡分配電流,前提是它們的靜態(tài)參數(shù)差異不大。此外,良好的電路布局意味著,只有裸片之間互熱效應(yīng)合理,熱應(yīng)力才能分布均衡[1]。


本文介紹一個(gè)電驅(qū)逆變器模塊連續(xù)工作測(cè)溫系統(tǒng)的開(kāi)發(fā)步驟和過(guò)程,并分析了影響功率模塊使用壽命的并聯(lián)碳化硅裸片之間的熱失衡現(xiàn)象。電路布局引起的寄生元件和靜態(tài)參數(shù)(例如,通態(tài)電阻和閾值電壓)是引起并聯(lián)器件熱失衡的主要因素。論文[2]中詳細(xì)論述了電路布局的不對(duì)稱性,它會(huì)影響柵極到源極環(huán)路,引起串聯(lián)電感,并導(dǎo)致驅(qū)動(dòng)環(huán)路不匹配,從而嚴(yán)重影響并聯(lián)器件的動(dòng)態(tài)性能。


論文[3]中描述了如何通過(guò)紅外熱像儀圖像分析功率模塊在穩(wěn)態(tài)下的熱失衡問(wèn)題。雖然通態(tài)電阻分布范圍是一個(gè)重要的靜態(tài)參數(shù),但是電阻與溫度的關(guān)系將會(huì)補(bǔ)償通態(tài)電阻的分布范圍。事實(shí)上,芯片升溫將會(huì)減輕漏源通態(tài)電阻自然分布范圍引起的熱失衡現(xiàn)象。


本文將重點(diǎn)討論另一個(gè)關(guān)鍵參數(shù):閾值電壓(Vth),它對(duì)開(kāi)關(guān)的導(dǎo)通和關(guān)斷性能影響很大,從而影響功率開(kāi)關(guān)的能量損耗。兩個(gè)并聯(lián)芯片之間的閾壓Vth差會(huì)導(dǎo)致能耗失衡,最終影響整個(gè)功率模塊的性能。論文[4]詳細(xì)地描述了 Vth 對(duì)開(kāi)關(guān)能耗的影響,證明當(dāng)Vth 升高 500mV時(shí),導(dǎo)通狀態(tài)耗散功率升幅可能高達(dá) 40%。


根據(jù)這個(gè)論據(jù),我們認(rèn)為有必要建立一個(gè)能夠在正常工作條件下直接測(cè)量開(kāi)關(guān)溫度的測(cè)溫系統(tǒng),以評(píng)估和表征功率模塊內(nèi)不同裸片的散熱性能。不僅在生產(chǎn)線上設(shè)法最大限度縮窄工藝的參數(shù)分布范圍,包括閾壓Vth的分布范圍,還需要根據(jù)模塊內(nèi)距離最近的兩個(gè)芯片之間的微小差異,在模塊組裝層面采取進(jìn)一步的改善行動(dòng)。我們利用這一概念組裝了兩個(gè)不同的功率模塊:第一個(gè)模塊叫做 GAP1,內(nèi)部裸片閾壓Vth的最大分布范圍是250mV(圍繞平均值+/- 125mV),第二個(gè)模塊叫做GAP2,Vth的最大變化范圍是 500mV(圍繞平均值+/-250mV)。采用兩個(gè)不同的開(kāi)關(guān)頻率進(jìn)行測(cè)試:電驅(qū)逆變器的典型工作頻率8kHz和12kHz。眾所周知,耗散功率的增加與開(kāi)關(guān)頻率成正比。


A.實(shí)驗(yàn)裝置


我們的主要目標(biāo)是設(shè)計(jì)開(kāi)發(fā)一個(gè)溫度測(cè)量系統(tǒng),使我們能夠在更接近電驅(qū)逆變器的實(shí)際應(yīng)用環(huán)境中測(cè)量功率芯片的溫度。因此,必須從適合的機(jī)械部件以及液壓、電氣和電子組件開(kāi)始,使所有組件都指向上述目標(biāo)。下圖是已實(shí)現(xiàn)的最終溫度測(cè)試系統(tǒng)的框圖。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖1:完整的測(cè)溫系統(tǒng) – 框圖


測(cè)溫系統(tǒng)的液壓部分是由冷水機(jī)、進(jìn)水閥、出水閥組成,冷卻液在液壓管道內(nèi)循環(huán)流動(dòng),為被測(cè)溫裝置散熱。進(jìn)水閥溫度和流量以及水套(水箱)的外觀尺寸是決定逆變器尺寸的重要參數(shù),因?yàn)樗鼈冎苯佑绊懛庋b的RTH熱阻率。冷卻液是乙二醇和水的50%-50%混合物,這是變頻冷卻器回路中常見(jiàn)的冷卻液配制方法。為了測(cè)量冷卻液的流量,在被測(cè)溫裝置前面連接一個(gè)流量計(jì),在我們的實(shí)驗(yàn)中,冷卻液流量設(shè)為每分鐘 3.7 升。采用溫度計(jì)檢測(cè)功率模塊進(jìn)水閥的冷卻液溫度何時(shí)達(dá)到65℃的參考溫度。鋁制散熱器為功率模塊散熱,功率模塊的柵極信號(hào)由專門的柵極驅(qū)動(dòng)板提供。圖 2 是測(cè)溫實(shí)驗(yàn)設(shè)置。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖2:實(shí)驗(yàn)裝置


下面是設(shè)備清單


表1:測(cè)試設(shè)備


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析


B. 被測(cè)溫設(shè)備和柵極驅(qū)動(dòng)板設(shè)計(jì)


我們?cè)谝粋€(gè)連續(xù)高頻工作的碳化硅三相功率模塊上進(jìn)行熱分析。特別是,把功率模塊的中間橋臂斷開(kāi),將橋臂U 和橋臂 W的交流端子連接1.2mH的電感負(fù)載,獲得一個(gè)全橋拓?fù)洌▓D 3)。


圖3:半橋等效電路.png 

圖3:半橋等效電路


如何通過(guò)多層結(jié)構(gòu)實(shí)現(xiàn)驅(qū)動(dòng)模塊是在開(kāi)發(fā)測(cè)溫系統(tǒng)時(shí)需要重點(diǎn)考慮的一個(gè)因素。第一級(jí)(電源)利用DC-DC升壓轉(zhuǎn)換器提供+18V和5V電壓,這是開(kāi)關(guān)操作所需的電源。第二級(jí)(主板)包含驅(qū)動(dòng)器和通斷電阻,用于驅(qū)動(dòng)電荷注入柵源極電容器,以免在開(kāi)關(guān)過(guò)程中達(dá)到器件的擊穿電壓。下圖是這些板的 3D 模型。


最后一級(jí)是由 Nucleo STM32 微控制器板實(shí)現(xiàn)的控制模塊。該模塊采用單極 PWM 控制方法,用相同信號(hào)驅(qū)動(dòng)兩個(gè)對(duì)角線上的開(kāi)關(guān)?;パa(bǔ)信號(hào)及所需的死區(qū)時(shí)間用于驅(qū)動(dòng)第二對(duì)角線上的功率開(kāi)關(guān)。根據(jù)負(fù)荷工況和實(shí)際工作條件,設(shè)置 PWM 信號(hào)的占空比,以獲得峰值電流達(dá)到設(shè)計(jì)要求的正弦電流波形。圖 4所示是 PWM 互補(bǔ)信號(hào)和負(fù)載電流(460 A Imax) 的相關(guān)波形。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖4. PWM驅(qū)動(dòng)信號(hào)和負(fù)載電流


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖5 :柵極驅(qū)動(dòng)板 – 電源和主板


柵極驅(qū)動(dòng)板安裝在功率模塊上面,如上圖所示。兩塊板子是金字塔形狀和互補(bǔ)結(jié)構(gòu),通過(guò)排針插接在一起,以最大限度地減少走線距離、驅(qū)動(dòng)板上的寄生元件和信號(hào)傳播延遲。


在下圖中,可以看到所使用的測(cè)試工具以及直流母線和微控制器板。因?yàn)楦哳l電流會(huì)流經(jīng)匯流排,所以,在設(shè)計(jì)階段應(yīng)特別注意匯流排的正確尺寸。板上有兩個(gè)開(kāi)孔,方便我們直接觀察被測(cè)芯片,并用紅外熱像儀測(cè)量結(jié)溫 (TJ) 。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖6:電氣系統(tǒng)概述


被測(cè)溫SiC功率模塊的特性如下:25℃時(shí)通態(tài)電阻典型值RdsON=1.9mΩ(每個(gè)開(kāi)關(guān)),標(biāo)稱電流Iphase=340A,擊穿電壓Vb=1200V。圖 7 所示是全橋轉(zhuǎn)換器的一個(gè)橋臂:每個(gè)開(kāi)關(guān)都是由八個(gè)并聯(lián)的裸片組成。在下圖中,我們可以看到被測(cè)溫器件的內(nèi)部電路布局,并確定組成上下橋臂開(kāi)關(guān)的八個(gè)裸片的位置。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖7:被測(cè)器件電路布局


C. 并聯(lián)芯片間的閾壓差對(duì)溫度不平衡的影響


測(cè)試電壓和電流分別是 400V 母線電壓和 200Hz 340 Arms 正弦相電流,使用8kHz和12kHz 兩種開(kāi)關(guān)頻率測(cè)試在不同耗散功率時(shí)的熱失衡現(xiàn)象[3]。


溫度測(cè)量的目的是量化全橋 32 個(gè)芯片中溫度最高和最低的芯片之間的溫差,比較GAP 1 模塊和GAP 2 模塊在相同開(kāi)關(guān)頻率條件下的散熱性能。


值得一提的是,為了使實(shí)驗(yàn)裝置的測(cè)量準(zhǔn)確度達(dá)到要求,對(duì)FLIR E-76熱像儀進(jìn)行了預(yù)表征測(cè)量過(guò)程,涉及的主要參數(shù)包括安裝位置角度,以及與表面材料和外部光線條件相關(guān)的發(fā)射系數(shù)。在 50°C 至 175°C的穩(wěn)態(tài)溫度范圍內(nèi),通過(guò)熱板給功率模塊加熱來(lái)進(jìn)行校準(zhǔn)。最后,對(duì)照熱板溫度設(shè)定值檢查NTC 讀數(shù),確保二者一致。


只有完成實(shí)驗(yàn)裝置校準(zhǔn)后,才開(kāi)始拍攝熱圖像。圖 8 和圖 9 所示是GAP 1 模塊在開(kāi)關(guān)頻率 12kHz時(shí)的紅外熱圖像,同時(shí)給出了開(kāi)關(guān)內(nèi)每個(gè)芯片的結(jié)溫測(cè)量值。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖8:橋臂U在8kHz時(shí)的紅外熱圖像


下圖是橋臂W在開(kāi)關(guān)頻率12 kHz時(shí)的紅外熱圖像。


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析

圖9: 橋臂W在12kHz時(shí)的紅外熱圖像


在GAP2 模塊上做同樣的測(cè)溫實(shí)驗(yàn)。圖中上面的八顆裸片屬于上橋臂開(kāi)關(guān),而下面的八顆裸片屬于下橋臂開(kāi)關(guān)。在 8kHz 和 12kHz開(kāi)關(guān)頻率條件下,分別對(duì)GAP 1 模塊和GAP 2模塊進(jìn)行了溫度分析。下表匯總了測(cè)量分析結(jié)果,報(bào)告了每個(gè)步驟測(cè)得的最大溫度和最小溫度。


表二:測(cè)試結(jié)果


電驅(qū)逆變器SiC功率模塊芯片級(jí)熱分析


在GAP 1 模塊中,溫度最高和最低芯片的溫差,在 8kHz 時(shí)為 4.4 °C,在 12kHz 時(shí)為 4.6 °C。在根據(jù)選型標(biāo)準(zhǔn)選擇 Vth 的GAP 2模塊中,8kHz 時(shí)的熱增量為 6.3 °C,12kHz 時(shí)為8.7 °C。

D. 結(jié)論


測(cè)試表明,減小并聯(lián)碳化硅芯片的閾壓差可以極大地降低芯片之間的溫差。此外,隨著開(kāi)關(guān)頻率提高,通過(guò)減小裸片閾壓差的方式降低溫差的方法變得更加有效,特別是,在測(cè)試中,溫差在 8kHz 時(shí)降低了 25%,在開(kāi)關(guān)頻率為12kHz 時(shí)降低了近 50%。引起開(kāi)關(guān)耗散功率的因素包括 Eon、Eoff 和二極管反向恢復(fù)損耗,當(dāng)然還有開(kāi)關(guān)頻率。


從實(shí)驗(yàn)結(jié)果來(lái)看,對(duì)于給定的選型標(biāo)準(zhǔn),提高開(kāi)關(guān)頻率降低溫差的方法無(wú)論如何不如降低閾壓分布范圍更有效。由于測(cè)量過(guò)程中存在許多技術(shù)問(wèn)題,其中包括總線過(guò)熱和電源電壓紋波,因此,無(wú)法在上一代電動(dòng)汽車的典型標(biāo)稱電池電壓下執(zhí)行測(cè)試。預(yù)計(jì)這將會(huì)擴(kuò)大溫差,因此,從選型標(biāo)準(zhǔn)或器件閾壓范圍開(kāi)始,能夠預(yù)測(cè)結(jié)溫?zé)岵黄胶獾臄?shù)學(xué)模型將非常有幫助 。


參考文獻(xiàn)

[1]A. Sitta, G. Mauromicale, V. Giuffrida, A. Manzitto, M. Papaserio, D. Cavallaro, G. Bazzano, M. Renna, S.A. Rizzo, M. Calabretta -

Paralleling Silicon Carbide MOSFETs in Power Module for Traction Inverters: a Parametric Study

[2]Szymon B?czkowski, Asger Bj?rn J?rgensen, Helong Li, Christian Uhrenfeldt, Xiaoping Dai, Stig Munk-Nielsen - Switching current imbalance mitigation in power modules with parallel connected SIC MOSFETs I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[3]Diane-Perle Sadik, Juan Colmenares, Dimosthenis Peftitsis, Jang-

Kwon Lim, Jacek, Rabkowski and Hans-Peter Nee “Experimental investigations of static and transient current sharing of parallel-connected Silicon Carbide MOSFETs”

[4]Antonia Lanzafame, Vittorio Giuffrida “Improving Switching Performance in SiC Power Modules by Better Balancing Gate Threshold Voltage Differences”

[5]Calabretta, Michele & Sitta, Alessandro & Oliveri, Salvatore & Sequenzia, Gaetano. (2021). Silicon Carbide Multi-Chip Power Module for Traction Inverter Applications: Thermal Characterization and Modeling, 1982].

免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:

電磁隔離技術(shù)與控制需求同步發(fā)展

西部電博會(huì)揭秘新質(zhì)生產(chǎn)力,超前劇透亮點(diǎn),這些展區(qū)不容錯(cuò)過(guò)!

如何解決單芯片驅(qū)動(dòng)HB/LB/DRL,LED負(fù)載切換電流過(guò)沖?

估分布式雷達(dá)架構(gòu)的四個(gè)理由

AC-DC控制器PCB布局指南


特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉