【導讀】通常,以以下方式描述IGBT(絕緣柵雙極晶體管):“ IGBT是場效應晶體管和雙極晶體管的組合,其中N溝道FET控制雙極晶體管”。盡管這句話很好地描述了基礎知識,但在高功率范圍的IGBT應用中,IGBT控制電路的復雜性實際上要比控制小MOSFET時要高得多。
通常,以以下方式描述IGBT(絕緣柵雙極晶體管):“ IGBT是場效應晶體管和雙極晶體管的組合,其中N溝道FET控制雙極晶體管”。盡管這句話很好地描述了基礎知識,但在高功率范圍的IGBT應用中,IGBT控制電路的復雜性實際上要比控制小MOSFET時要高得多。例如,MOSFET的控制通常稱為空載,因為MOSFET所需的開關(guān)電流通常可以忽略不計。
對于功率IGBT,這毫無疑問,因為控制通常需要幾瓦特。此外,在這種情況下,不再容易忽略需要重新加載的內(nèi)部電容,而這些電容在小型MOSFET的控制中幾乎不起任何作用。
正確的,最重要的是,對IGBT的有效控制是一個復雜的過程,為此,需要將驅(qū)動器調(diào)諧至IGBT。此外,大多數(shù)現(xiàn)代IGBT驅(qū)動器提供保護電路和安全功能,以便在出現(xiàn)故障的情況下為IGBT提供保護,否則通常會導致IGBT完全損壞。
在存在較高反向電壓的情況下,必須對輸入電路(低壓)和輸出電路(高壓)進行電壓隔離。輸出電路直接連接至高壓IGBT,而輸入電路則提供至控制電子設備的接口(圖1)。圖2顯示了具有光學控制功能的2通道IGBT驅(qū)動器板。
IGBT的電隔離控制
在幾乎所有IGBT應用中,控制信號和驅(qū)動器電路之間的電隔離都是必不可少的。傳輸電隔離的控制信號和反饋信號(錯誤信號)有三種可能性:
感應耦合
電容耦合
光學耦合
盡管很少使用電容性解決方案,但電感耦合和光耦合解決方案卻被廣泛使用。在中低電壓的情況下經(jīng)常使用光耦合器,而在較高的反向電壓(> 1200 V)下使用變壓器和光纖。由于在光信號傳輸?shù)那闆r下無法傳輸足夠的功率以用于控制電子設備和IGBT控制,因此幾乎總是使用變壓器解決方案進行功率傳輸。因此,變壓器被用于傳輸控制和反饋信號,特別是在中高壓范圍內(nèi)。從理論上講,該解決方案即使在更高的電壓下也適用,但是隨著電壓的升高,變壓器的空間要求也隨之提高,因此仍要考慮最小的電氣間隙和爬電距離。
因此,在較高的反向電壓(> 1200 V)下,光傳輸可以證明其優(yōu)勢。如圖3所示,根據(jù)IEC 664-1:1992標準,在較高電壓下,指定的最小距離為幾厘米。這樣的距離對于光纖耦合來說是非常短的環(huán)節(jié)。然而,電感耦合或什至電容耦合已經(jīng)可以代表相當大的支出,并且在板上需要很大的空間。表1再次總結(jié)了每種解決方案的優(yōu)缺點。
表格1。電隔離方法
光纖
在高壓系統(tǒng)中,通常使用光纖連接來傳輸控制信號以及狀態(tài)和錯誤信號。與所有其他隔離技術(shù)相比,明顯的優(yōu)勢是理論上可以在可實現(xiàn)的距離內(nèi)實現(xiàn)無限隔離。從技術(shù)上講,通過使用波長為850nm或1310nm的多模光纖(MM)或單模光纖(SM),幾公里的傳輸不會出現(xiàn)問題。但是更頻繁的是,僅需要傳輸幾英尺甚至幾英寸,并且在此已證明聚合物光纖(POF)和650nm波長的傳輸是最佳的。使用POF不僅提供了一種經(jīng)濟高效的解決方案,而且與MM和SM光纖相比,使用POF更加容易處理和準備電纜。
使用光纖進行傳輸?shù)牧硪粋€優(yōu)點是,光傳輸路徑完全不受電磁輻射的影響。因此,如工業(yè)環(huán)境中常見的那樣,如果將纖維放置在強電磁輻射部件附近,則根本沒有問題。
如果所需的隔離電壓僅為幾千伏,則也可以使用短連接作為替代。這些設備具有光纖連接的優(yōu)點,但可以直接安裝在板上,不需要任何組裝。此處的間隙是機械規(guī)定的。這種短鏈路的一個示例是AVAGO Technology的HFBR-3810Z,如圖4所示。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。