2 轉(zhuǎn)接器的設(shè)計
該型QMA/LRMG-KJ轉(zhuǎn)接器采用50Ω阻抗,一端為標準的QMA-K界面,可與QMA-J同軸連接器互換,可實現(xiàn)與電纜的快鎖和快速更換,另一端為標準的LRMG-J界面,與LRMG-K同軸連接器互換,可應(yīng)用于集成化模塊。連接器的模塊化,通常要求射頻接觸件具有浮動盲插功能。為了保證多通均能達到各自的電氣界面要求,接觸件一般都設(shè)計有彈簧結(jié)構(gòu)。常規(guī)彈簧浮動結(jié)構(gòu)如圖1所示,連接器的電氣件和安裝結(jié)構(gòu)件是相對運動的,僅適合于連接器的軸向拉力小于彈簧彈力的使用環(huán)境。一般當(dāng)連接器接粗長電纜,且電纜的拉力超過彈簧的彈力時,將不宜采用。本文在常規(guī)彈簧浮動結(jié)構(gòu)的基礎(chǔ)上,增加連接器的可伸縮結(jié)構(gòu),既保留了QMA-K端的界面軸向固定性,又滿足了LRMG-J端的彈簧浮動性,可在集成化模塊中快速裝夾。
2.1 主要性能指標
機械性能:可伸縮量:2mm;機械壽命:≥500次。
電氣性能:特性阻抗:50Ω;工作頻段:Ku波段;頻率范圍:0.01GHz~18GHz;VSWR:≤1.4。
2.2 機械結(jié)構(gòu)原理設(shè)計
圖2 轉(zhuǎn)接器設(shè)計結(jié)構(gòu)
根據(jù)轉(zhuǎn)接器可伸縮性要求,內(nèi)、外導(dǎo)體分別設(shè)計為分體式,如圖2所示。外導(dǎo)體1與外導(dǎo)體2之間通過彈性卡圈和彈簧連接,確保轉(zhuǎn)接器的可壓縮性和回彈能力,同時外導(dǎo)體1設(shè)計有簧片結(jié)構(gòu),確保轉(zhuǎn)接器外導(dǎo)體的電連續(xù)性。LRMG射頻接觸件是一種推入式連接器,壓縮彈簧的工作載荷選取至關(guān)重要:太小,連接器接觸件不可靠,太大,直接提升了連接器的插拔力,不利于連接器的高度集成化。轉(zhuǎn)接器彈簧工作載荷應(yīng)略高于我司LRMG同軸接觸件的插拔力范圍要求和考慮轉(zhuǎn)接器內(nèi)導(dǎo)體之間、外導(dǎo)體之間摩擦力之和。彈簧的結(jié)構(gòu)參數(shù)還需根據(jù)外導(dǎo)體的外形尺寸和安裝尺寸以及可伸縮量來綜合考評。彈簧工作載荷可通過公式(1)[1]計算。
(1)
式中:Fn——彈簧的彈力,N;fn——變形量,mm;G——材料切變模量,N/mm2;d——彈簧線徑,mm;n——彈簧有效圈數(shù);D——彈簧中徑,mm;
外導(dǎo)體1上裝配鎖緊環(huán),轉(zhuǎn)接器通過鎖緊環(huán)結(jié)構(gòu)安裝于模塊殼體中。轉(zhuǎn)接器與鎖緊環(huán)間隙配合,以實現(xiàn)轉(zhuǎn)接器的浮動[2]。轉(zhuǎn)接器的LRMG端在對接過程中,能夠自動調(diào)整至理想的對中位置,實現(xiàn)柔性對接,同時降低模塊的整體插拔力。
2.2 電設(shè)計及仿真優(yōu)化
射頻連接器因為需要考慮內(nèi)導(dǎo)體和介質(zhì)體在外導(dǎo)體中的固定性,不可避免需要設(shè)計定位臺階,但由此造成了阻抗的不連續(xù)。信號在射頻連接器中傳輸時,遇到阻抗不匹配的地方會引起反射,從而使電壓駐波比增大,影響電氣性能。因此需要通過阻抗計算,對阻抗不連續(xù)的地方進行阻抗補償,從而滿足阻抗一致性要求[3]。
射頻同軸連接器的特性阻抗是由內(nèi)導(dǎo)體和外導(dǎo)體的直徑以及絕緣支撐介質(zhì)的介電常數(shù)決定的,之間的關(guān)系式見式(2):
(2)
式中:Z0——特性阻抗,50Ω;εr——相對介電常數(shù),空氣=1,聚四氟乙烯=2.02;D——外導(dǎo)體內(nèi)徑,mm;d——內(nèi)導(dǎo)體外徑,mm。
根據(jù)式(1),分段設(shè)計負載的內(nèi)部結(jié)構(gòu)。LRMG-J端與標準LRMG-K對接后,介質(zhì)為空氣,εr為1,內(nèi)導(dǎo)體外徑為0.7mm及外導(dǎo)體內(nèi)徑為1.6mm均為標準值,滿足公式(2)。標準QMA-K端,內(nèi)、外導(dǎo)體之間完全用聚四氟乙烯填充,聚四氟乙烯的相對介電常數(shù)εr為2.02,內(nèi)導(dǎo)體外徑為1.27mm及外導(dǎo)體內(nèi)徑為4.1mm均為標準值,滿足公式(2)。轉(zhuǎn)接器中間段,只有聚四氟乙烯和空氣兩種介質(zhì),均可通過公式(2)進行內(nèi)、外導(dǎo)體直徑計算。
由于轉(zhuǎn)接器中存在多個變徑點,并且同時含有臺階式變截面和錐形變截面[4],其補充設(shè)計較為繁瑣,因此可通過相關(guān)補償理論進行估算,然后把初步確定的結(jié)構(gòu)尺寸導(dǎo)入仿真軟件,進行模擬計算,并確定最優(yōu)電結(jié)構(gòu)理論尺寸。通過把多個錯位補償值設(shè)定為變量,得出仿真結(jié)果如圖3所示:在0.01GHz~20GHz范圍內(nèi),VSWR最大值為1.05,理論上能夠滿足0.01GHz~18GHz,VSWR≤1.4的使用要求。
圖3 轉(zhuǎn)接器仿真VSWR曲線
3 調(diào)試與完善
由于該型轉(zhuǎn)接器結(jié)構(gòu)較為復(fù)雜,零件數(shù)量多,裝配級數(shù)多,且零件加工尺寸控制點較多,產(chǎn)品裝配后測試結(jié)果與仿真結(jié)果存在一定的差異。仿真結(jié)果并不等同于實物時間性能。因此在產(chǎn)品投產(chǎn)前,需要進行樣品驗證、調(diào)試和完善。
該轉(zhuǎn)接器在樣品驗證過程中發(fā)現(xiàn)兩個問題點:彈簧彈力偏小和VSWR偏大。
轉(zhuǎn)接器樣品與標準LRMG-K對接互換過程發(fā)現(xiàn),轉(zhuǎn)接器還未對接到位,彈簧已經(jīng)發(fā)生壓縮,轉(zhuǎn)接器總長度有縮短。因此無法保證轉(zhuǎn)接器在自由伸長狀態(tài)實現(xiàn)與LRMG-K接觸件的可靠連接。根據(jù)公式(1),減少彈簧的有效圈數(shù)可以提升彈簧的彈力。
通過樣品測試發(fā)現(xiàn),VSWR在1.4至1.5之間。經(jīng)分析,轉(zhuǎn)接器內(nèi)、外導(dǎo)體經(jīng)均分體結(jié)構(gòu),外導(dǎo)體1和外導(dǎo)體2(內(nèi)導(dǎo)體1和內(nèi)導(dǎo)體2)通過開槽簧片結(jié)構(gòu)實現(xiàn)彈性互連,而開槽槽寬將影響轉(zhuǎn)接器的特性阻抗,見公式(3)。通過式(3)可以看出,開槽數(shù)目越多,開槽越寬,對連接器的特性阻抗影響越大[5]。
(3)
其中:△Z ——特性阻抗變化的百分數(shù);N——開槽數(shù)目;w——插孔接觸件上的槽寬;R——插孔接觸件的外徑。
因此通過對彈簧的有效圈數(shù)和對內(nèi)、外導(dǎo)體的槽寬進行優(yōu)化,重新生產(chǎn)樣品進行驗證。經(jīng)調(diào)試,發(fā)現(xiàn)轉(zhuǎn)接器自由伸長狀態(tài),可順利完成于LRMG-K接觸件的互換,且VSWR≤1.35(0.01GHz~18GHz)。轉(zhuǎn)接器結(jié)構(gòu)可靠,性能優(yōu)良,能夠滿足使用要求,實物如圖4所示。
圖4 轉(zhuǎn)接器實物外觀
4 結(jié)論
本文介紹了一款可伸縮QMA/LRMG-KJ射頻同軸轉(zhuǎn)接器的設(shè)計過程,總結(jié)了調(diào)試過程中遇到的問題,給出了相應(yīng)的理論分析和解決辦法,并完善了轉(zhuǎn)接器的結(jié)構(gòu)。由實際測試結(jié)果可以看出,該型同軸轉(zhuǎn)接器能夠滿足使用要求,可應(yīng)用于集成化模塊中。本文為連接器的高度集成化,提供了設(shè)計思路。
參考文獻(References):
[1]李留安,于少軍. 多路射頻連接器的結(jié)構(gòu)設(shè)計[J].電子產(chǎn)品世界,2011 (6):54-57.
[2]劉靈. 高低頻混裝連接器的結(jié)構(gòu)與力學(xué)性能研究[J].航天制作技術(shù),2020 (2):65-67.
[3]馮良平,徐嵐. 射頻同軸連接器設(shè)計要點[J].國外電子測量技術(shù),2005(11):39~44.
[4]李明德. 降低射頻同軸連接器電壓駐波比的方法探討[J].機電元件,2011(3):33~42.
[5]喬長海,李留安. 射頻連接器用開槽插孔的可靠性設(shè)計與制作[J].電子產(chǎn)品世界,2011 (3):52~56.
作者簡介:劉靈(1986-),男,工程師,從事高低頻混裝連接器及組件產(chǎn)品的研發(fā)工作。
注:本文來源于《電子產(chǎn)品世界》雜志2020年10月期