你的位置:首頁 > 電路保護(hù) > 正文

如何解決模擬輸入IEC系統(tǒng)保護(hù)問題?

發(fā)布時(shí)間:2018-03-21 來源:David Forde 責(zé)任編輯:lina

【導(dǎo)讀】與系統(tǒng)模擬輸入和輸出節(jié)點(diǎn)交互作用的外置高壓瞬變可能破壞系統(tǒng)中未采用充分保護(hù)措施的集成電路(IC)。現(xiàn)代IC的模擬輸入和輸出引腳通常采用了高壓靜電放電(ESD)瞬變保護(hù)措施。

簡介
 
與系統(tǒng)模擬輸入和輸出節(jié)點(diǎn)交互作用的外置高壓瞬變可能破壞系統(tǒng)中未采用充分保護(hù)措施的集成電路(IC)。現(xiàn)代IC的模擬輸入和輸出引腳通常采用了高壓靜電放電(ESD)瞬變保護(hù)措施。人體模型(HBM)、機(jī)器模型(MM)和充電器件模型(CDM)是用來測量器件承受ESD事件的能力的器件級(jí)標(biāo)準(zhǔn)。這些測試旨在確保器件能承受器件制造和PCB裝配流程中的靜電壓力,通常在受控環(huán)境中實(shí)施。
 
工作于惡劣電磁環(huán)境中的系統(tǒng)在輸入或輸出節(jié)點(diǎn)上需要承受高壓瞬變——并且在從器件級(jí)標(biāo)準(zhǔn)轉(zhuǎn)向系統(tǒng)級(jí)標(biāo)準(zhǔn)以實(shí)現(xiàn)高壓瞬變魯棒性時(shí),傳輸?shù)絀C引腳的能量水平存在顯著差異。因此,直接與這些系統(tǒng)輸入/輸出節(jié)點(diǎn)連接的IC也必須采用充分的保護(hù)措施,以承受系統(tǒng)級(jí)高壓瞬變。如果在系統(tǒng)設(shè)計(jì)中未能及早考慮這種保護(hù)機(jī)制,結(jié)果可能導(dǎo)致系統(tǒng)保護(hù)不足、產(chǎn)品發(fā)布推遲、系統(tǒng)性能下降等問題。本文旨在描述如何保護(hù)敏感的模擬輸入和輸出節(jié)點(diǎn),使其免受這些IEC標(biāo)準(zhǔn)瞬變的影響。
 

圖1. 面向精密模擬輸入的IEC系統(tǒng)保護(hù)。
 
IEC 61000
 
IEC 61000是有關(guān)EMC魯棒性的系統(tǒng)級(jí)標(biāo)準(zhǔn)。該標(biāo)準(zhǔn)中涉及高壓瞬變的三個(gè)部分為IEC 61000-4-2、IEC 61000-4-4和IEC 61000-4-5。這些是針對(duì)靜電放電(ESD)、電快速瞬變(EFT)和浪涌的系統(tǒng)級(jí)標(biāo)準(zhǔn)。這些標(biāo)準(zhǔn)定義了在施加這些瞬變影響的情況下用于評(píng)估電子電氣設(shè)備抗擾度的波形、測試方法和測試級(jí)別。
 
IEC 61000-4-2測試的主要目的是確定系統(tǒng)在運(yùn)行過程中對(duì)系統(tǒng)外部的ESD事件的免疫能力——例如,如果系統(tǒng)輸入/輸出接觸到帶電人體、電纜、工具時(shí)。IEC 61000-4-2規(guī)定要使用兩種耦合方法測試:接觸放電和氣隙放電。
 
IEC 61000-4-4 EFT測試涉及將快速的瞬變脈沖群耦合到信號(hào)線上,以表征與外部開關(guān)電路關(guān)聯(lián)的瞬變干擾,這類電路能夠以容性方式耦合至信號(hào)線。這種測試反映了開關(guān)觸點(diǎn)抖動(dòng),或者因?yàn)楦行曰蛉菪载?fù)載切換而產(chǎn)生的瞬變,而所有這些在工業(yè)環(huán)境中都很常見。
 
浪涌瞬變通常由開關(guān)操作造成的過壓情況或雷擊造成。開關(guān)瞬變的起因可能是電力系統(tǒng)切換、配電系統(tǒng)中的負(fù)載變化或各種系統(tǒng)故障(例如安裝時(shí)與接地系統(tǒng)形成短路和電弧故障)。雷電瞬變的原因可以是附近的雷擊將高電流和電壓注入電路中。
 
瞬變電壓抑制器

TVS的基本參數(shù):
 
瞬變電壓抑制器(TVS)可以用于抑制電壓浪涌。用于箝位高壓瞬 變,使大電流繞過敏感電路。TVS的基本參數(shù)為:
 
●工作峰值反向電壓:低于該值時(shí)不會(huì)發(fā)生顯著導(dǎo)電現(xiàn)象的電壓
 
●擊穿電壓:等于該值時(shí)會(huì)發(fā)生規(guī)定導(dǎo)電現(xiàn)象的電壓
 
●最大箝位電壓:器件上傳導(dǎo)規(guī)定的最大電流的最大電壓
 
在系統(tǒng)輸入或輸出上使用TVS器件時(shí)要考慮多個(gè)因素。ESD或EFT事件會(huì)產(chǎn)生超快時(shí)間(1 ns至5 ns)的瞬變波形,在TVS器件箝位擊穿電壓之前,在系統(tǒng)輸入上導(dǎo)致初始過沖電壓。浪涌事件具有不同的瞬變波形,上升時(shí)間緩慢(1.2 μs),脈沖持續(xù)時(shí)間長(50 μs);并且在該事件下,將在擊穿電壓下開始箝位電壓,但可能一直增大至TVS最大箝位電壓。另外,TVS必須高于可能由接線錯(cuò)誤、斷電或用戶錯(cuò)誤導(dǎo)致的任何容許直流過壓,以保護(hù)系統(tǒng),使其免受該直流過壓事件的影響。所有三種情況都有可能在下游電路的輸入上導(dǎo)致具有潛在破壞作用的過壓。
 
模擬輸入保護(hù)電路
 
為了全面保護(hù)系統(tǒng)輸入/輸出節(jié)點(diǎn),必須對(duì)系統(tǒng)進(jìn)行直流過壓和高壓瞬變保護(hù)。在系統(tǒng)輸入節(jié)點(diǎn)用一個(gè)魯棒的精密型過壓保護(hù)(OVP)開關(guān),加上TVS,可以保護(hù)靈敏的下游電路(例如,模數(shù)轉(zhuǎn)換器或放大器輸入/輸出),因?yàn)檫@樣可以阻斷過壓、抑制未被TVS分流到地的剩余電流。
 

圖2. OVP開關(guān)功能框圖。
 
圖2顯示了一個(gè)典型過壓保護(hù)開關(guān)的功能框圖;注意,該開關(guān)的ESD保護(hù)二極管未以其輸入節(jié)點(diǎn)上的電源電壓為基準(zhǔn)。相反,它有一個(gè)ESD保護(hù)單元,在超過器件最大承受電壓時(shí)激活,使器件能承受并阻斷超過其電源電壓的電壓。由于模擬系統(tǒng)通常只要求開關(guān)的外向引腳采用IEC保護(hù),所以,ESD保護(hù)二極管依然保留在內(nèi)向引腳上(標(biāo)志為開關(guān)輸出端或漏極端)。這些二極管能帶來額外的好處,因?yàn)樗鼈兤鸬捷o助保護(hù)器件的作用。在持續(xù)時(shí)間較短、上升時(shí)間快的高壓瞬變(如ESD或EFT)過程中,由于瞬變電壓會(huì)被箝位,所以電壓不會(huì)到達(dá)下游電路。在持續(xù)時(shí)間較長、上升時(shí)間慢的高壓瞬變(如浪涌)過程中,在開關(guān)過壓保護(hù)功能被激活、開關(guān)斷開、使故障完全與下游電路分離之前,內(nèi)部保護(hù)二極管會(huì)箝位開關(guān)的輸出電壓。
 
圖3顯示了一個(gè)與外部接口的系統(tǒng)輸入端的工作區(qū)域。最左邊的區(qū)域(綠色)表示正常工作區(qū)間,輸入電壓位于電源電壓范圍以內(nèi)。左起第二個(gè)區(qū)域(藍(lán)色)表示輸入端可能存在持續(xù)直流或長時(shí)間交流過壓的范圍,原因是斷電、接線錯(cuò)誤或短路。另外,圖中最右側(cè)(紫色)是過壓開關(guān)內(nèi)部ESD保護(hù)二極管的觸發(fā)電壓。選擇的TVS擊穿電壓(橙色)必須小于過壓保護(hù)開關(guān)的最大承受電壓并且大于任何已知的可能持續(xù)直流或長時(shí)間交流過壓,以免無意中觸發(fā)TVS。
 

圖3. 系統(tǒng)工作區(qū)域。
 
圖4中的保護(hù)電路可以承受最高8 kV IEC ESD(接觸放電)、16 kV IEC ESD(空氣放電)、4 kV EFT和4 kV浪涌。ADG5412F(來自ADI公司的±55 V過壓保護(hù)和檢測、四通道單刀雙擲開關(guān))可以承受ESD、EFT和浪涌瞬變導(dǎo)致的過壓,過壓保護(hù)電路與漏極上的保護(hù)二極管共同保護(hù)和隔離下游電路。表1展示的是ADG5412F在TVS擊穿電壓與電阻的各種組合下可以承受的高壓瞬變電平。
 

圖4. 保護(hù)電路。
 

表1. 測試結(jié)果(未在0 Ω電阻與33 V TVS及45 V TVS組合條件下進(jìn)行IEC空氣放電測試)
 
圖4也展示了高壓瞬變事件過程中的各種電流路徑。大部分電流通過TVS器件分流到地(路徑I1)。路徑I2展示的是通過ADG5412F輸出節(jié)點(diǎn)上的內(nèi)部ESD消耗的電流,同時(shí),輸出電壓被箝位于比電源電壓高0.7 V的水平。最后,路徑I3中的電流是下游器件必須承受的剩余電流水平。有關(guān)該保護(hù)電路的更多詳情,請(qǐng)參閱ADI公司應(yīng)用筆記AN-1436。

IEC ESD保護(hù)
 

圖5. 測試電路
 
圖6和圖7所示為在8 kV接觸放電和16 kV空氣放電IEC ESD事件在圖5所示測試電路上的測試結(jié)果。如前所述,在TVS器件將電壓箝位至54 V左右之前,源引腳上有一個(gè)初始過壓。在此過壓過程中,開關(guān)漏極上的電壓被箝位于比電源電壓高0.7 V的水平。漏極電流測量結(jié)果展示的是流入下游器件二極管中的電流。脈沖峰值電流約為680 mA,電流持續(xù)時(shí)間約為60 ns。相比之下,1 kV HBM ESD電擊的峰值電流為660 mA,持續(xù)時(shí)間為500 ns。我們因此可以得出結(jié)論認(rèn)為,在采用這種保護(hù)電路的條件下,HBM ESD額定值為1 kV的下游器件應(yīng)該能承受8 kV接觸放電和16 kV空氣放電IEC ESD事件。
 

圖6. 8 kV事件期間的漏極電壓和漏極輸出電流。
 

圖7. 16 kV空氣放電事件期間的漏極電壓和漏極輸出電流。
 
EFT 保護(hù)
 
圖8是在4 kV EFT事件的一個(gè)脈沖的測量結(jié)果。與ESD瞬變過程中發(fā)生的情況類似,在TVS器件將電壓箝位至54 V左右之前,源引腳上有一個(gè)初始過壓。在此過壓過程中,開關(guān)漏極上的電壓再次被箝位于比電源電壓高0.7 V的水平。在這種情況下,流入下游器件中的脈沖峰值電流僅為420 mA,電流持續(xù)時(shí)間僅約為90 ns。同樣與HBM ESD事件相比,750 kV HBM ESD的電壓的峰值電流為500 mA,持續(xù)時(shí)間為500 ns。因此,在4 kV EFT事件期間,能量被傳輸至下游器件的引腳上,該能量少于750 kV HBM ESD事件下的能量。
 

圖8. 單次脈沖的EFT電流。

浪涌保護(hù)
 
圖9中是將4 kV浪涌瞬變施加到保護(hù)電路輸入節(jié)點(diǎn)上時(shí)的測量結(jié)果。如前所述,源電壓可能增大并超過TVS擊穿電壓,一直達(dá)到最大箝位電壓。該電路中的過壓保護(hù)開關(guān)的反應(yīng)時(shí)間約為500 ns,并且在這前500 ns的時(shí)間內(nèi),器件漏極上的電壓被箝位于比電源電壓高0.7 V的水平。在此期間以及約500 ns后,流至下游器件的峰值電流僅為608 mA,開關(guān)關(guān)閉并使下游電路與故障隔離。同樣,這里的能量少于1 kV HBM ESD事件期間傳輸?shù)哪芰俊?/div>
 

圖9. 浪涌事件期間OVP工作原理。
 
結(jié)論
 
本文描述了如何依據(jù)IEC 61000-4-2、IEC 61000-4-4和IEC 61000-4-5標(biāo)準(zhǔn)的規(guī)定,對(duì)集成電路模擬輸入和輸出進(jìn)行高壓瞬變保護(hù)。
 
本文說明了如何設(shè)計(jì)系統(tǒng)輸入輸出保護(hù)電路,同時(shí)為用戶帶來如下好處:
 
●簡化保護(hù)設(shè)計(jì)
 
●加速產(chǎn)品上市
 
●提高保護(hù)電路性能,減少分立元件數(shù)量
 
●減小信號(hào)路徑中的串聯(lián)電阻阻值
 
●由于TVS設(shè)計(jì)窗口很寬,TVS選擇更方便
 
●達(dá)到下列標(biāo)準(zhǔn)的系統(tǒng)-級(jí)保護(hù)
 
○IEC 61000-4-2 16 kV空氣放電
 
○IEC 61000-4-2 8 kV接觸放電
 
○ IEC 61000-4-4 4 kV
 
○IEC 61000-4-5 4 kV
 
●交流和持續(xù)直流過壓保護(hù)高達(dá)±55 V
 
●掉電保護(hù)可達(dá)±55V


推薦閱讀:
 
要采購開關(guān)么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉