【導讀】隨著更新的集成電路(IC)技術采用更小的幾何尺寸和更低的工作電壓,不斷更新換代的便攜產品對靜電放電(ESD)電壓損害越來越敏感。有鑒于此,手機、MP3播放器和數碼相機等便攜產品的設計人員必須評估各種可供選擇的ESD保護解決方案,確保他們所選擇的解決方案能滿足當今IC不斷變化的需求。本文將探討選擇有效ESD保護解決方案的關鍵步驟。
ESD波形
以系統級的方法來定義典型的ESD事件所采用的最常見的波形,是以其亞納秒上升時間和高電流電平(參見圖1)為顯著特征的IEC61000-4-2波形。這 種波形的規(guī)范要求采用四級ESD量級。大部分設計工程師都要求把產品限定到最高級的8 kV的接觸放電或15 kV的空氣放電。當進行元器件級測試時,因為空氣放電測試在這樣的小型元器件上是不能重復的,接觸放電測試則是最適合的測試方式。
從近期的設計趨勢的ESD所需考慮因素
ESD 保護器件的目的是把數千伏電壓的ESD輸入電壓降低到所保護的IC所能承受的安全電壓,并能把電流從IC旁路。雖然所需ESD波形的輸入電壓和電流在過去 的幾年沒有出現變化,但要求保護IC的安全電壓電平卻降低了。過去,IC設計對于(防范)ESD而言更具強固性,而且能夠承受更高電壓,因此,在選擇能符 合IEC61000-4-2第4級的要求的保護二極管時有充分的選擇余地。而對于如今ESD更敏感的IC,設計工程師就必須不僅要確保保護器件能夠符合 IEC61000-4-2第4級標準,而且還要確保該器件能夠將ESD脈沖鉗制到足夠低的電平,從而確保IC不受損壞。在為給定的應用選擇最佳保護器件的 時候,設計工程師必須要考慮到ESD保護器件能夠把ESD電壓控制到多么低的電平。
如何選擇最有效的保護方案
保護二極管的關鍵直流(DC)規(guī)范是擊穿電壓、漏電壓和電容。大部分數據表也會說明IEC61000-4-2的最大額定電壓,該電壓指的是二極管在該電壓上 不會被ESD沖擊損壞。所存在的問題是,大部分數據表中沒有任何針對象ESD這樣的高頻率、高瞬態(tài)電流的鉗位電壓方面的信息??墒且敿氄f明,要在 IEC61000-4-2規(guī)范中硬性規(guī)定鉗位電壓不是一件簡單的事情,這是因為該規(guī)范的初衷是用來檢驗系統是否合格,并且頻率是如此高。要把這種規(guī)范來檢 驗保護器件,關鍵的是不僅要檢查保護二極管是否合格/不合格,還要檢查它能把ESD電壓鉗位到多么低的電平。
比較保護二極管鉗位電壓的最好途徑是采用一臺示波器截取保護二極管兩端在ESD產生期間內的實際電壓波形,可以根據圖2的測試設置來實現。
在 觀察經受IEC61000-4-2標準測試的ESD保護器件的電壓波形時,通常初始電壓峰值之后緊隨著第二峰值,并且最終電壓將會穩(wěn)定下來。初始峰值是由 IEC61000-4-2波形的初始電流峰值和由測試電路中存在的電感所導致的過沖相結合所造成的。初始峰值的持續(xù)時間很短,因此限定了傳輸到IC的能 量。圖中曲線上顯示了保護器件的鉗位性能,其位于第一個過沖之后。應該重點關注第二個峰值,這是因為該峰值的持續(xù)時間較長,被測IC承受的能量將因此增 加。在以下的討論中,鉗位電壓被定義為第二峰值的最大電壓。
[page]
幾種保護二極管的比較
為了進行公平的比較,所選元器件應當有相似的封裝尺寸和參數指標。用來比較的是三 只ESD保護二極管,當對它們的電特性進行比較時,認為這些器件可以彼此互換。這些器件都是雙向的ESD保護器件,具有同樣的擊穿電壓(6.8 V)、電容(15 pf)和封裝外形(1.0 × 0.6 × 0.4 mm)。這里所選擇的產品分別是競爭對手1的RSB6.8CS、競爭對手2的PG05DBTFC和安森美半導體的ESD9B5.0ST5G。
當對以上器件的DC性能進行比較的時候,結果看起來似乎是相同的(參見圖2所示曲線)。此外,它們都聲稱符合IEC61000-4-2第4級標準,這就意味 著它們將都經受住高達8 kV接觸電壓的ESD沖擊。確保保護敏感IC的ESD保護器件至關重要的性能不是DC性能; 盡管器件符合IEC61000-4-2的第4級標準是重要,但更重要的是保護IC。為確保在ESD事件期間IC沒有被損壞,保護二極管必須把ESD電壓鉗 位至足夠低的值,使IC不會損壞。
圖2:三種ESD器件的DC特性對比。
[page]
為了比較每個器件的鉗位性能,利用示波器來截取ESD發(fā)生期間的電壓波形。利用完全相同的測試條件,對上述器件進行并排測試。圖3中顯示出每個二極管對正/負ESD脈沖的響應曲線。所用的輸入脈沖為IEC61000-4-2第4級的標準接觸電壓(8 kV)。
圖3:三種ESD保護二極管的鉗位電壓對比(示波器屏幕截圖)。
[page]
從圖3所示的屏幕圖上可見,顯然,與兩個競爭對手的器件(藍色波形)相比較,安森美半導體保護解決方案(黑色波形)提供更低的ESD脈沖鉗位電壓。與競爭對 手2的18 V和競爭對手1的23 V相比較,安森美半導體的器件將正脈沖鉗位在14 V。而在負脈沖期間,這三個器件之間鉗位電壓的差異更加明顯。安森美半導體、競爭對手2和競爭對手1的器件對負脈沖的鉗位電壓分別是20 V、34 V和42 V。在負ESD脈沖期間這三種器件之間有明顯的區(qū)別,競爭對手2的器件的鉗位電壓比安森美半導體的器件高70%,而競爭對手1的器件的鉗位電壓則是安森美 半導體器件的兩倍之多。通過競爭對手的保護器件后的剩余負脈沖電壓對那些更容易受到ESD破壞的新IC設計有潛在的危險。然而,安森美半導體的器件卻能在 負脈沖和正脈沖兩個方向上保持低的鉗位電壓,從而將遭受正/負ESD脈沖的破壞風險都保持在最低水平。
好的保護器件需要對 正/負ESD脈沖都能進行很好的鉗位,以保證終端產品在實際條件下具有最高的可靠性。在正/負兩個方向上的低鉗位電壓確保保護器件能保護極敏感的IC,這 使得設計工程師能利用可以實現更多功能和更高速度的最新IC技術。由于認識到在選擇ESD保護器件時鉗位電壓的重要性日益提高,很多提供保護器件的公司在 他們最新ESD保護器件的數據表中提供了類似圖3中的ESD鉗位屏幕截圖。