高速模數(shù)轉(zhuǎn)換器的轉(zhuǎn)換誤差率解密
發(fā)布時(shí)間:2021-03-15 來源:Ian Beavers 責(zé)任編輯:wenwei
【導(dǎo)讀】高速模數(shù)轉(zhuǎn)換器(ADC)存在一些固有限制,使其偶爾會(huì)在其正常功能以外產(chǎn)生罕見的轉(zhuǎn)換錯(cuò)誤。但是,很多實(shí)際采樣系統(tǒng)不容許存在高ADC轉(zhuǎn)換誤差率。因此,量化高速模數(shù)轉(zhuǎn)換誤差率(CER)的頻率和幅度非常重要。
高速或GSPS ADC(每秒千兆采樣ADC)相對(duì)稀疏出現(xiàn)的轉(zhuǎn)換錯(cuò)誤不僅造成其難以檢測(cè),而且還使測(cè)量過程非常耗時(shí)。該持續(xù)時(shí)間通常超出毫秒范圍,達(dá)到幾小時(shí)、幾天、幾周甚至是幾個(gè)月。為了幫助消減這一耗時(shí)測(cè)試負(fù)擔(dān),可以在一定“置信度”的確定性情況下估算誤差率,而仍然保持結(jié)果的質(zhì)量。
誤碼率(BER)與轉(zhuǎn)換誤差率
與串行或并行數(shù)字?jǐn)?shù)據(jù)傳輸中BER的數(shù)字等效值類似,CER是轉(zhuǎn)換錯(cuò)誤數(shù)與樣本總數(shù)之比。但是,BER和CER之間有一些截然不同之處。數(shù)字?jǐn)?shù)據(jù)流中的BER測(cè)試采用長(zhǎng)偽隨機(jī)序列,該序列可于發(fā)送器中在傳輸兩端使用常用種子值來啟動(dòng)。接收器預(yù)期將收到理想的傳輸。通過觀察接收數(shù)據(jù)與理想數(shù)據(jù)的差異,便可精確計(jì)算出BER。兩端之間偽隨機(jī)序列數(shù)據(jù)中的失配(基于種子值)即視為誤碼。
與CER不同,誤差測(cè)定不像純數(shù)字比較那么簡(jiǎn)單。由于ADC轉(zhuǎn)換過程中始終具有小的非線性,另外還存在系統(tǒng)噪聲和抖動(dòng),因此并非總是能確定預(yù)期數(shù)據(jù)和實(shí)際數(shù)據(jù)之間的確切差異。相反,需要建立誤差閾值,用于確定轉(zhuǎn)換錯(cuò)誤和具有容許預(yù)期噪聲的樣本之間的界限。這與數(shù)字BER不同,并不會(huì)對(duì)發(fā)送和接收的預(yù)期數(shù)據(jù)進(jìn)行確切比較。相反,首先必須量化樣本的誤差幅度,然后再確定是轉(zhuǎn)換錯(cuò)誤,還是在轉(zhuǎn)換器和系統(tǒng)的預(yù)期非線性范圍內(nèi)。ADC后端數(shù)字接口的誤碼率必須低于轉(zhuǎn)換器的內(nèi)核CER,因此無(wú)法忽視。如果并非如此,那么數(shù)據(jù)輸出傳輸誤差將覆蓋CER并成為主要誤差來源。
亞穩(wěn)態(tài)
高速ADC中造成轉(zhuǎn)換錯(cuò)誤的一個(gè)常見原因是一種稱為亞穩(wěn)態(tài)的現(xiàn)象。高速ADC在將模擬信號(hào)轉(zhuǎn)換為數(shù)字值的轉(zhuǎn)換過程中,往往會(huì)在不同階段使用多個(gè)梯級(jí)比較器。如果比較器無(wú)法確定模擬輸入是高于還是低于其參考點(diǎn)時(shí),就會(huì)產(chǎn)生可能導(dǎo)致出現(xiàn)錯(cuò)誤代碼的亞穩(wěn)態(tài)結(jié)果。當(dāng)兩個(gè)比較器的輸入之差幅度非常小或?yàn)榱銜r(shí),就可能發(fā)生這種情況,此時(shí)無(wú)法進(jìn)行正確比較。由于此錯(cuò)誤值會(huì)沿著流水線傳播,因此ADC可能產(chǎn)生重大的轉(zhuǎn)換錯(cuò)誤。
當(dāng)差分模擬輸入為相對(duì)較大的正值或負(fù)值時(shí),比較器可以快速計(jì)算出差值并給出明確決定。當(dāng)差分值很小或?yàn)榱銜r(shí),比較器做出決定所需的持續(xù)時(shí)間會(huì)長(zhǎng)很多。如果在此決定點(diǎn)之前比較器輸出鎖存,則將產(chǎn)生亞穩(wěn)態(tài)結(jié)果。
有些設(shè)計(jì)方案可以減輕這個(gè)問題。首先,將比較器的不確定范圍設(shè)計(jì)的非常小,迫使比較器在可能的最大模擬輸入條件范圍內(nèi)做出準(zhǔn)確決定。但是,這可能造成電路功率和設(shè)計(jì)尺寸增加。
第二種方法是盡量延遲比較器采樣時(shí)間,給模擬輸入最長(zhǎng)的時(shí)間建立至已知的比較器輸出值。但這種方法存在多個(gè)限制,因?yàn)檠舆t最長(zhǎng)也只能持續(xù)到當(dāng)前采樣時(shí)間結(jié)束,而后比較器必須繼續(xù)處理下一次采樣。第三種方法是采用智能錯(cuò)誤檢測(cè)和校正算法,該算法會(huì)對(duì)比較器在高速ADC轉(zhuǎn)換過程后續(xù)階段中引入的不確定性進(jìn)行數(shù)字補(bǔ)償。當(dāng)比較器未能在最大允許時(shí)間內(nèi)做出決定時(shí),邏輯可檢測(cè)到該缺失。然后,此信息可被附加到相關(guān)樣本上,以便未來進(jìn)行內(nèi)部調(diào)整。識(shí)別出此警報(bào)時(shí),可使用后處理步驟在樣本從轉(zhuǎn)換器輸出前糾正該錯(cuò)誤。這可以從圖1中的AD9625看出,它是ADI公司的一款12位、2.5GSPS ADC。
圖1:可在AD9625的模數(shù)轉(zhuǎn)換過程內(nèi)識(shí)別比較器的不確定性。在后續(xù)步驟中執(zhí)行校正命令以校正樣本,然后再?gòu)霓D(zhuǎn)換器輸出。
置信度
CER置信度(CL)是指在不精確到特定故障率的情況下對(duì)未來錯(cuò)誤的外推預(yù)期。這可減少針對(duì)給定CER獲取的樣本總數(shù),但代價(jià)是不能保證100%的確定性。從數(shù)學(xué)角度來說,要達(dá)到絕對(duì)100%的確定性,需要取得無(wú)限持續(xù)時(shí)間內(nèi)的樣本。因此,根據(jù)行業(yè)經(jīng)驗(yàn),95%的置信度已經(jīng)相當(dāng)接近已知值,并且實(shí)現(xiàn)了不確定性和測(cè)量時(shí)間之間的平衡。如果將測(cè)試重復(fù)一百次,則有95次可以準(zhǔn)確識(shí)別誤碼率。有時(shí)工程師會(huì)誤認(rèn)為一旦在測(cè)試期間檢測(cè)到誤差,該過程就會(huì)結(jié)束并找到最終的CER。這既不準(zhǔn)確也不完整。無(wú)論過程中是否有誤差,轉(zhuǎn)換誤差率及相關(guān)的置信度都可以測(cè)試。但是,如果在給定置信度下檢測(cè)到誤差,則與沒有錯(cuò)誤時(shí)的樣本數(shù)相比,必須增加測(cè)量的樣本數(shù)量。
以上公式給出了置信度、誤碼率和樣本數(shù)之間的自然對(duì)數(shù)數(shù)學(xué)關(guān)系表達(dá)式。式中:N為測(cè)量的樣本數(shù);CER為轉(zhuǎn)換誤碼率;CL為置信度;E為檢測(cè)到的錯(cuò)誤數(shù)。
未檢測(cè)到誤差時(shí),公式有所簡(jiǎn)化,右邊的項(xiàng)等于零,結(jié)果僅取決于左邊的項(xiàng)。當(dāng)CL為95%且未檢測(cè)到誤差時(shí),所需的樣本數(shù)僅約為預(yù)期CER的倒數(shù)乘以3。測(cè)量到100%置信度,即對(duì)于任何CER值都有CL=1.0,從數(shù)學(xué)角度上需要獲取-ln(0)無(wú)窮大的無(wú)限樣本數(shù)(N)。
誤差閾值
高速ADC中的轉(zhuǎn)換誤差幅度很關(guān)鍵,有些誤差比其他誤差更重要。例如,一個(gè)或兩個(gè)最低有效位(LSB)誤差可能在系統(tǒng)的預(yù)期噪底之內(nèi),甚至可能不會(huì)影響瞬時(shí)性能。但是,最高有效位(MSB)誤差,乃至滿量程誤差可能造成系統(tǒng)故障事件。因此,CER測(cè)試需要具有一種機(jī)制或閾值來確定轉(zhuǎn)換中誤差的嚴(yán)重程度。
轉(zhuǎn)換的誤差閾值應(yīng)該包括ADC的已知線性不足,以及時(shí)鐘抖動(dòng)和其他超出轉(zhuǎn)換器功能的系統(tǒng)噪聲。對(duì)于任何給定樣本,這些通常會(huì)累加為14位ADC的4或5個(gè)最低有效位(LSB)或16~32個(gè)代碼。根據(jù)ADC分辨率、系統(tǒng)性能和應(yīng)用的誤碼率要求,該值的大小可能略有不同。使用此誤差帶與理想值進(jìn)行比較后,超出此限值的樣本將被視為轉(zhuǎn)換錯(cuò)誤。在傳統(tǒng)視頻ADC中,此錯(cuò)誤被稱為“閃碼”,因?yàn)樗鼤?huì)在視頻屏幕上產(chǎn)生亮白色像素閃爍??山邮艿霓D(zhuǎn)換器誤碼率很大程度上取決于信號(hào)處理系統(tǒng)和系統(tǒng)誤差容差要求。
歷史上測(cè)量的GSPS ADC轉(zhuǎn)換誤差率一般不會(huì)低于1e-14。1e-15的誤差率意味著轉(zhuǎn)換器在1e15個(gè)樣本范圍內(nèi)不應(yīng)出現(xiàn)轉(zhuǎn)換錯(cuò)誤。雖然這些數(shù)字看起來很大,但憑借當(dāng)今先進(jìn)轉(zhuǎn)換器技術(shù)的高采樣速率,對(duì)于CER測(cè)試仍然可以實(shí)現(xiàn)。但是,對(duì)于具有8ns采樣速率的125MSPS轉(zhuǎn)換器,1e15次采樣將占用800,000s(1e15*8ns),也即9.24天。要在這些誤碼率中實(shí)現(xiàn)95%的CL,則需要分別將這些采樣持續(xù)時(shí)間的均乘以2.996。
CER測(cè)試
圖2給出了如何測(cè)試內(nèi)部ADC 內(nèi)核的CER。在或接近ADC最大編碼速率下采樣時(shí),可使用頻率相對(duì)較慢的正弦波作為模擬輸入。應(yīng)對(duì)模擬輸入信號(hào)進(jìn)行規(guī)劃,以便在忽視系統(tǒng)噪聲的情況下,兩個(gè)相鄰樣本之間的預(yù)期絕對(duì)差不大于1LSB代碼。理想情況下,模擬輸入信號(hào)比滿量程稍大,以便運(yùn)用ADC的所有代碼。應(yīng)計(jì)算模擬輸入和編碼采樣速率,以便建立較長(zhǎng)的一致性周期,而ADC不在同一代碼級(jí)別進(jìn)行一致采樣。
圖2:CER測(cè)試的兩種采樣情形。頂部的情形是以比Fs/2稍快的速率對(duì)模擬信號(hào)進(jìn)行采樣,其中僅每隔一個(gè)樣本比較一次。理想情況下,兩個(gè)連續(xù)樣本的不同之處不超過一個(gè)LSB代碼。下面的情形是對(duì)相對(duì)較慢的模擬輸入進(jìn)行過采樣,以便兩個(gè)相鄰樣本的不同之處也不超過一個(gè)LSB代碼。
圖3:CER測(cè)試比較兩個(gè)連續(xù)ADC樣本和預(yù)定誤差閾值。計(jì)數(shù)器記錄錯(cuò)誤發(fā)生次數(shù)、幅值和采樣位置標(biāo)識(shí)符。
系統(tǒng)使用一個(gè)計(jì)數(shù)器來跟蹤兩個(gè)相鄰樣本之間的幅度差值超過閾值限值的情況,并將這種情況計(jì)數(shù)為轉(zhuǎn)換錯(cuò)誤。該計(jì)數(shù)器必須保留整個(gè)測(cè)試過程中錯(cuò)誤的累加總數(shù)。為了保證系統(tǒng)按預(yù)期工作,還應(yīng)記錄誤差幅度與理想情況之間的關(guān)系。測(cè)試需要的時(shí)間將基于采樣速率、所需的測(cè)試CER和所需的置信度(圖3)。
小結(jié)
典型轉(zhuǎn)換器架構(gòu)可實(shí)現(xiàn)一些系統(tǒng)可接受的測(cè)量轉(zhuǎn)換誤碼率,新的設(shè)計(jì)和錯(cuò)誤檢測(cè)算法正推動(dòng)限值實(shí)現(xiàn)更佳的性能。ADI的12位2.5GSPS ADC AD9625分級(jí)比較型流水線內(nèi)核使用專有技術(shù)檢測(cè)流水線處理前期的ADC轉(zhuǎn)換錯(cuò)誤,然后處理和糾正后期的錯(cuò)誤。這在12位GSPS ADC上實(shí)現(xiàn)了優(yōu)于1e-15、置信度為95%的行業(yè)一流測(cè)量CER。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
- 大聯(lián)大世平集團(tuán)的駕駛員監(jiān)控系統(tǒng)(DMS)方案榮獲第六屆“金輯獎(jiǎng)之最佳技術(shù)實(shí)踐應(yīng)用”獎(jiǎng)
- X-CUBE-STL:支持更多STM32, 揭開功能安全的神秘面紗
- 觸摸式OLED顯示屏有望重新定義汽車用戶界面
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
音頻IC
音頻SoC
音頻變壓器
引線電感
語(yǔ)音控制
元件符號(hào)
元器件選型
云電視
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器