交織型采樣ADC的基本原理
發(fā)布時間:2020-06-11 來源:Jonathan Harris,ADI 應(yīng)用工程師 責(zé)任編輯:wenwei
【導(dǎo)讀】在當(dāng)今的許多細(xì)分市場,交織型模數(shù)轉(zhuǎn)換器(ADC)在許多應(yīng)用中都具有多項(xiàng)優(yōu)勢。在通信基礎(chǔ)設(shè)施中,存在著一種推動因素,使ADC的采樣速率不斷提高,以便支持多頻段、多載波無線電,除此之外滿足DPD(數(shù)字預(yù)失真)等線性化技術(shù)中更寬的帶寬要求。在軍事和航空航天領(lǐng)域,采樣速率更高的ADC可讓多功能系統(tǒng)用于通信、電子監(jiān)控和雷達(dá)等多種應(yīng)用中——此處僅舉數(shù)例。工業(yè)儀器儀表應(yīng)用中始終需要采樣速率更高的ADC,以便充分精確地測量速度更高的信號。
首先,一定要準(zhǔn)確地了解交織型ADC是什么。要了解交織,最好了解一下實(shí)際發(fā)生的情況以及它是如何實(shí)現(xiàn)的。有了基本的了解后,再討論交織的好處。當(dāng)然,我們都知道,天下沒有免費(fèi)的午餐,因此需要充分評估和驗(yàn)證交織型采樣相關(guān)的技術(shù)難點(diǎn)。
關(guān)于交織
若ADC為交織型,則兩個或兩個以上具有固定時鐘相位差關(guān)系的ADC用來同步采樣輸入信號,并產(chǎn)生組合輸出信號,使得采樣帶寬為單個ADC帶寬的數(shù)倍。利用m個ADC可讓有效采樣速率增加m倍。為簡便起見并易于理解,我們重點(diǎn)考察兩個ADC的情況。這種情況下,如果兩個ADC的每一個采樣速率均為fS且呈交織型,則最終采樣速率為2× fS。這兩個ADC必須具有確定的時鐘相位差關(guān)系,才能正確交織。時鐘相位關(guān)系由等式1給出,其中:n是某個特定的ADC,m是ADC總數(shù)。
(1)
舉例而言,兩個ADC采樣速率均為100 MSPS且呈交織型,因此采樣速率為200 MSPS。此時,等式1可用來推導(dǎo)出兩個ADC的時鐘相位關(guān)系,如等式2和等式3。
(2)
(3)
注意,如果已知時鐘相位關(guān)系,便可確定不同量化值的組合輸出。圖1以圖形說明時鐘相位關(guān)系,以及兩個100 MSPS交織型ADC的樣本結(jié)構(gòu)。注意180°時鐘相位關(guān)系,以及樣本是如何交織的。輸入波形也可由兩個ADC進(jìn)行采樣。在這種情況下,采用經(jīng)過2分頻的200 MHz時鐘輸入,并所需的時鐘相位發(fā)送至每個ADC,便可實(shí)現(xiàn)交織。
圖1.兩個交織型100 MSPS ADC—基本原理圖。
此概念還可以另一種方式表達(dá),如圖2所示。通過將這兩個100 MSPS ADC以交織方式組合,采樣速率便能增加至200 MSPS。這樣每個奈奎斯特區(qū)可以從50 MHz擴(kuò)展到100 MHz,使工作時的可用帶寬翻倍。增加的工作帶寬可為多個市場領(lǐng)域的應(yīng)用帶來諸多優(yōu)勢。無線電系統(tǒng)可以增加其支持的頻段數(shù);雷達(dá)系統(tǒng)可以增加空間分辨率;而測量設(shè)備可以實(shí)現(xiàn)更高的模擬輸入帶寬。
圖2.兩個交織型100 MSPS ADC—時鐘和樣本。
交織的優(yōu)勢
交織結(jié)構(gòu)的優(yōu)勢可惠及多個細(xì)分市場。交織型ADC最大好處是增加了帶寬,因?yàn)锳DC的奈奎斯特帶寬更寬了。同樣,我們舉兩個100 MSPS ADC交織以實(shí)現(xiàn)200 MSPS采樣速率的例子。圖3顯示通過交織兩個ADC,可以大幅增加帶寬。這為多種應(yīng)用場景產(chǎn)生了諸多收益。就像蜂窩標(biāo)準(zhǔn)增加了通道帶寬和工作頻段數(shù)一樣,對ADC可用帶寬的要求也越來越高。此外,在軍事應(yīng)用中,需要更好的空間識別能力以及增加后端通信的通道帶寬,這些都要求ADC提供更高的帶寬。由于這些領(lǐng)域?qū)挼囊笤絹碓礁?,因此需要?zhǔn)確地測量這些信號。因此,為了正確地獲取和測量這些高帶寬信號,測量設(shè)備也需要更高的帶寬。很多設(shè)計(jì)中的系統(tǒng)要求其實(shí)領(lǐng)先于商用ADC技術(shù)。交織型結(jié)構(gòu)可以彌補(bǔ)這一技術(shù)差距。
圖3.兩個交織型ADC——奈奎斯特區(qū)
增加采樣速率能夠?yàn)檫@些應(yīng)用提供更多的帶寬,而且頻率規(guī)劃更輕松,還能降低通常在ADC輸入端使用抗混疊濾波器時帶來的復(fù)雜性和成本。面對這些優(yōu)勢,大家一定想知道需要為此付出什么代價。就像大多數(shù)事情一樣,天下沒有免費(fèi)的午餐。交織型ADC具有更高的帶寬和其他有用的優(yōu)勢,但在處理交織型ADC時也會帶來一些挑戰(zhàn)。
交織型ADC的挑戰(zhàn)
在交織組合ADC時存在一些挑戰(zhàn),還有一些注意事項(xiàng)。由于與交織型ADC相關(guān)的缺陷,輸出頻譜中會出現(xiàn)雜散。這些缺陷基本上是兩個正在交織的ADC之間不匹配。輸出頻譜中的雜散導(dǎo)致的基本不匹配有四種。包括失調(diào)不匹配、增益不匹配、時序不匹配和帶寬不匹配。
其中最容易理解的可能是兩個ADC之間的失調(diào)不匹配。每個ADC都會有一個相關(guān)的直流失調(diào)值。當(dāng)兩個ADC交織并在兩個ADC之間來回交替采樣時,每個連續(xù)采樣的直流失調(diào)會發(fā)生變化。圖4舉例說明了每個ADC如何具有自己的直流失調(diào),以及交織輸出如何有效地在這兩個直流失調(diào)值之間來回切換。輸出以fS/2的速率在這些失調(diào)值之間切換,將導(dǎo)致位于fS/2的輸出頻譜中產(chǎn)生雜散。由于不匹配本身沒有頻率分量,并且僅為直流,因此出現(xiàn)在輸出頻譜中的雜散頻率僅取決于采樣頻率,并將始終出現(xiàn)在fS/2頻率下。雜散的幅度取決于ADC之間失調(diào)不匹配的幅度。不匹配值越大,雜散值就越大。為了盡可能減少失調(diào)不匹配導(dǎo)致的雜散,不需要完全消除每個ADC中的直流失調(diào)。這樣做會濾除信號中的所有直流成分,不適合使用零中頻(ZIF)架構(gòu)的系統(tǒng),該架構(gòu)信號成分復(fù)雜,DC量實(shí)際是有用信號。相反,更合適的技術(shù)是讓其中一個ADC的失調(diào)與另一個ADC匹配。選擇一個ADC的失調(diào)作為基準(zhǔn),另一個ADC的失調(diào)設(shè)置為盡可能接近的值。失調(diào)值的匹配度越高,在fS/2產(chǎn)生的雜散就越低。
交織時要注意的第二個不匹配是ADC之間的增益不匹配。圖5顯示了兩個交織型轉(zhuǎn)換器之間的增益不匹配。在這種情況下,有一個不匹配頻率分量。為了觀察這種不匹配,必須向ADC施加信號。對于失調(diào)不匹配,無需信號即可查看兩個ADC的固有直流失調(diào)。對于增益不匹配,如果不存在信號,就無法測量增益不匹配,因而無法了解增益不匹配。增益不匹配將會產(chǎn)生與輸入頻率和采樣速率相關(guān)的輸出頻譜雜散,出現(xiàn)在fS/2 ± fIN處。為了最大程度地降低增益不匹配引起的雜散,采用了與失調(diào)不匹配類似的策略。選擇其中一個ADC的增益作為基準(zhǔn),另一個ADC的增益設(shè)置為盡可能接近的值。每個ADC增益值的匹配度越高,輸出頻譜中產(chǎn)生的雜散就越小。
接下來,我們必須探討兩個ADC之間的時序不匹配。時序不匹配有兩個分量:ADC模擬部分的群延遲和時鐘相位偏差。ADC中的模擬電路具有相關(guān)的群延遲,兩個ADC的群延遲值可能不同。此外還有時鐘相位偏差,它也包括兩個分量:各ADC的孔徑不確定性和一個與輸入各轉(zhuǎn)換器的時鐘相位精度相關(guān)的分量。圖6以圖形說明ADC時序不匹配的機(jī)制和影響。與增益不匹配雜散相似,時序不匹配雜散也與輸入頻率和采樣速率呈函數(shù)關(guān)系,出現(xiàn)在fS/2 ± fIN處。
為了盡可能降低時序不匹配引起的雜散,需要利用合適的電路設(shè)計(jì)技術(shù)使各轉(zhuǎn)換器模擬部分的群延遲恰當(dāng)匹配。此外,時鐘路徑設(shè)計(jì)必須盡量一致以使孔徑不確定性差異最小。最后,必須精確控制時鐘相位關(guān)系,使得兩個輸入時鐘盡可能相差180°。與其他不匹配一樣,目標(biāo)是盡量消除引起時序不匹配的機(jī)制。
最后一個不匹配可能最難理解和處理:帶寬不匹配。如圖7所示,帶寬不匹配具有增益和相位/頻率分量。這使得解決帶寬不匹配問題變得更為困難,因?yàn)樗辛硗鈨蓚€不匹配參數(shù)的分量。然而,在帶寬不匹配中,我們可在不同的頻率下看到不同增益值。此外,帶寬具有時序分量,使不同頻率下的信號通過每個轉(zhuǎn)換器時具有不同的延遲。出色的電路設(shè)計(jì)和布局布線實(shí)踐是減少ADC間帶寬失配的最好方法。ADC之間的匹配越好,則產(chǎn)生的雜散就越少。正如增益和時序不匹配會導(dǎo)致在輸出頻譜的fS/2 ± fIN處產(chǎn)生雜散一樣,帶寬不匹配也會在相同頻率處產(chǎn)生雜散。
圖4.失調(diào)不匹配
圖5.增益不匹配
圖6.時序不匹配
圖7.帶寬不匹配
現(xiàn)在我們已經(jīng)討論了交織ADC時引起問題的四種不同的不匹配,可以發(fā)現(xiàn)有一個共性。四個不匹配中有三個會在輸出頻譜的fS/2 ± fIN處產(chǎn)生雜散。失調(diào)不匹配雜散很容易識別,因?yàn)橹挥兴挥趂S/2處,并可輕松地進(jìn)行補(bǔ)償。增益、時序和帶寬不匹配都會在輸出頻譜的fS/2 ± fIN處產(chǎn)生雜散;因此,隨之而來的問題是:如何確定它們各自的影響。圖8以簡單的圖形方式指導(dǎo)如何從交織型ADC的不同不匹配中識別雜散來源。
圖8.交織型不匹配的相互關(guān)系
如果只是考察增益不匹配,那么它就是一個低頻(或直流)類型的不匹配。通過在直流附近執(zhí)行低頻增益測量,然后在較高的頻率處執(zhí)行增益測量,可將帶寬不匹配的增益分量與增益不匹配分離。增益不匹配與頻率無函數(shù)關(guān)系,而帶寬不匹配的增益分量與頻率呈函數(shù)關(guān)系。對于時序不匹配,可以采用類似的方法。在直流附近執(zhí)行低頻測量,然后在較高的頻率下執(zhí)行后續(xù)測量,以便將帶寬不匹配的時序分量與時序不匹配分離。
結(jié)論
最新通信系統(tǒng)設(shè)計(jì)、尖端雷達(dá)技術(shù)和超高帶寬測量設(shè)備似乎始終領(lǐng)先于現(xiàn)有的ADC技術(shù)。在這些需求的推動下,ADC的用戶和制造商都想方設(shè)法,試圖跟上這些需求的步伐。與提高典型ADC轉(zhuǎn)換速率的傳統(tǒng)方式相比,交織型ADC可以更快的速度實(shí)現(xiàn)更寬的帶寬。將兩個或更多ADC交織起來,可以增加可用帶寬,并以更快的速度滿足系統(tǒng)設(shè)計(jì)要求。然而,交織型ADC并非沒有代價,ADC之間的不匹配不容忽視。雖然不匹配確實(shí)存在,但了解其本質(zhì)及如何正確處理它們,設(shè)計(jì)人員就能更加明智地利用這些交織型ADC,并滿足最新系統(tǒng)設(shè)計(jì)不斷增長的要求。
參考文獻(xiàn)
Had、Jim、Mark Looney和Rob Reeder。“推動多通道模數(shù)轉(zhuǎn)換器技術(shù)發(fā)展。”《模擬對話》,第39卷第5期,2005年5月。
作者簡介
Jonathan Harris是ADI公司高速轉(zhuǎn)換器部(北卡羅來納州格林斯博羅)的一名產(chǎn)品應(yīng)用工程師。作為一名產(chǎn)品支持應(yīng)用工程師,他在射頻業(yè)擁有超過七年的經(jīng)驗(yàn)。Jonathan擁有奧本大學(xué)電子工程碩士學(xué)位和北卡羅來納大學(xué)夏洛特分校電子工程學(xué)士學(xué)位。平時喜歡移動音頻、nitro RC、大學(xué)橄欖球,以及陪伴兩個孩子。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動員爭金奪銀
- 輕松滿足檢測距離,勞易測新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號切換
- 基于APM32F411的移動電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動分壓器
滑動開關(guān)
輝曄
混合保護(hù)器
混合動力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器