基于IMU和地磁傳感器的捷聯(lián)慣性導(dǎo)航系統(tǒng)
發(fā)布時(shí)間:2019-11-29 來源:Joel Li 和 Van Yang 責(zé)任編輯:wenwei
【導(dǎo)讀】本文旨在介紹我們使用ADI公司的慣性測量單元(IMU)傳感器 ADIS16470 和PNI的地磁傳感器RM3100構(gòu)建的捷聯(lián)慣性導(dǎo)航系統(tǒng)(SINS)。實(shí)現(xiàn)了基于磁力、角速率和重力(MARG)的SINS的一些基本過程,包括電磁羅盤(地磁傳感器)校準(zhǔn)、使用擴(kuò)展卡爾曼濾波器(EKF)的姿態(tài)和航向參考系統(tǒng)(AHRS)和航跡跟蹤。還實(shí)現(xiàn)了使用最小平方誤差(MSE)方法的松耦合傳感器融合技術(shù)。文章展示了每個(gè)過程步驟使用的算法和實(shí)驗(yàn)設(shè)置。本文最后討論了結(jié)果分析和用于提高導(dǎo)航準(zhǔn)確性的方法。
簡介
隨著服務(wù)機(jī)器人市場和技術(shù)的發(fā)展,導(dǎo)航已成為研究和應(yīng)用中的一個(gè)熱點(diǎn)。與車輛、船舶或飛機(jī)相比,服務(wù)機(jī)器人體積小,成本低,因此它們的導(dǎo)航系統(tǒng)應(yīng)該具有捷聯(lián)和低成本的特點(diǎn)。傳統(tǒng)的穩(wěn)定平臺(tái)導(dǎo)航系統(tǒng)通常要采用獨(dú)立的加速度計(jì)和光纖或激光陀螺儀,所有傳感器都機(jī)械且剛性地安裝在與正在移動(dòng)的車輛隔離的穩(wěn)定平臺(tái)上。這導(dǎo)致了尺寸大、可靠性差、成本高的缺點(diǎn)。相反,在捷聯(lián)慣導(dǎo)系統(tǒng)中,慣性傳感器直接固定在車輛本體上,這意味著傳感器會(huì)與車輛一起旋轉(zhuǎn)。這種捷聯(lián)方法消除了穩(wěn)定平臺(tái)慣導(dǎo)的缺點(diǎn)。然而,平臺(tái)慣導(dǎo)的準(zhǔn)確性通常高于SINS。平臺(tái)慣導(dǎo)往往可以達(dá)到戰(zhàn)略級(jí)(0.0001°/時(shí)的陀螺儀偏置,1μg的加速器偏置)或軍用級(jí)(0.005°/時(shí)的陀螺儀偏置,30μg的加速器偏置),而多數(shù)SINS只能到達(dá)導(dǎo)航級(jí)(0.01°/時(shí)的陀螺儀偏置,50μg的加速器偏置)或戰(zhàn)術(shù)級(jí)(10°/時(shí)的陀螺儀偏置,1mg的加速器偏置)。對(duì)于大多數(shù)服務(wù)機(jī)器人或AGV導(dǎo)航應(yīng)用,這一精度足夠了。
導(dǎo)航方法很多,包括機(jī)器視覺、GPS、UWB、SLAM型激光雷達(dá)等?;贗MU的慣性導(dǎo)航始終是導(dǎo)航的重要組成部分。然而,由于這種傳感器的限制——例如偏置誤差、軸間誤差、噪聲,特別是零偏不穩(wěn)定性——慣性導(dǎo)航通常需要采用一個(gè)伙伴傳感器,定期為它提供參考或校準(zhǔn),本文將這種情況稱為傳感器融合。許多傳感器都可以與IMU融合,例如攝像頭和里程表,但在這些傳感器中,地磁傳感器是一種低成本的方案,可與IMU配合獲得姿態(tài)信息。
在本文中,我們使用ADI的IMU ADIS16470和地磁傳感器來開發(fā)平臺(tái)和算法,實(shí)現(xiàn)捷聯(lián)慣性導(dǎo)航系統(tǒng)。但是,地磁傳感器只能提供姿態(tài)信息。對(duì)于航位推算或距離測量,我們只能使用IMU中的 加速度傳感器。
ADIS16470 IMU簡介
ADI公司的ADIS16470是一款微型MEMS IMU,集成了3軸陀螺儀和3軸加速度計(jì)。其陀螺儀零偏穩(wěn)定性為8°/時(shí),加速計(jì)零偏穩(wěn)定性為13μg 其關(guān)鍵參數(shù)都經(jīng)過出廠校準(zhǔn)。此外,ADIS16470的 低價(jià)格在同級(jí)產(chǎn)品中具有吸引力,得到了許多客戶的廣泛使用。在本文中,我們使用微控制器與ADIS16470通過SPI接口進(jìn)行通信。
地磁傳感器介紹
地磁傳感器是用于測量羅盤體坐標(biāo)(即坐標(biāo)系)中的地磁場的傳感器,可為航向提供絕對(duì)參考。其x、y和z分量值由本地地磁場投影而來。這種傳感器有兩個(gè)主要缺點(diǎn)——一是精度和分辨 率不高——例如,常用的霍尼韋爾羅盤傳感器HMC5883L的分辨率僅為12位。另一個(gè)缺點(diǎn)是傳感器容易受到周圍環(huán)境的干擾,因?yàn)榈卮艌龇浅H?,?qiáng)度范圍為毫高斯到8高斯。
盡管有這些缺點(diǎn),仍然可以在許多情況下使用,例如戶外、低EMI環(huán)境等。將地磁傳感器與IMU進(jìn)行松耦合,就可以在大多數(shù)環(huán)境中使用這類傳感器。
在本文中,我們使用PNI傳感器公司的高性能電子羅盤傳感器RM3100,它提供了24位分辨率。PNI使用主動(dòng)激勵(lì)法來提高抗噪聲能力。
羅盤傳感器的校準(zhǔn)
在使用羅盤傳感器之前,需要對(duì)其進(jìn)行校準(zhǔn)以消除兩個(gè)主要誤差。一個(gè)是失調(diào)誤差,這原本是由傳感器和電路的失調(diào)誤差引起的。另一個(gè)是標(biāo)度誤差。這兩種誤差都容易受到周圍磁環(huán)境的干擾。例如,如果有一個(gè)x軸向的外部磁場施加到傳感器上,就會(huì)給出外部x軸失調(diào)誤差。同時(shí),x軸標(biāo)度也將與y軸和z軸不同。
通常用于校準(zhǔn)磁傳感器的方法是在xy平面上轉(zhuǎn)動(dòng)傳感器繞圈,然后抽取數(shù)據(jù)。一個(gè)地點(diǎn)的地磁場強(qiáng)度是一個(gè)常數(shù)值,因此繪制的數(shù)據(jù)應(yīng)該是一個(gè)圓;然而,事實(shí)上,我們將看到一個(gè)橢圓形,這意味著我們需要移動(dòng)橢圓并重新縮放到以零為中心的圓。
上述2D校準(zhǔn)方法有一些缺點(diǎn),并且需要用加速器來測量其傾斜度。我們使用3D球面擬合方法來校準(zhǔn)羅盤傳感器。首先,我們需要將傳感器旋轉(zhuǎn)到x-y-z空間中的每個(gè)方向,并在3D坐標(biāo)中繪制其值。然后我們需要使用最小平方誤差(MSE)方法將數(shù)據(jù)擬合為橢球面。
橢球方程可以表示為
其中,X、Y和Z是羅盤輸出在三個(gè)方向上的地磁分量。將這些值擬合為橢球面意味著,我們需要得到一組最優(yōu)系數(shù)解。我們將系數(shù)定義為:
在擬合時(shí),我們定義向量:
所以我們需要計(jì)算最優(yōu)σ,并使用公式2來找出最小值:
這樣我們就可以得到圖1所示的擬合結(jié)果。
圖1. 原始羅盤數(shù)據(jù)分布(左)和使用橢球擬合后的羅盤數(shù)據(jù)(右)。
為了校準(zhǔn)傳感器,我們需要拉伸或壓縮擬合的橢球面并將其移至以零為中心的球面上。我們使用矩陣奇異值分解(SVD)方法來進(jìn)行這種校準(zhǔn)。校準(zhǔn)后的球體如圖2所示。1,2
圖2. 用SVD方法進(jìn)行球體校準(zhǔn)后的羅盤數(shù)據(jù)。
校準(zhǔn)后,我們可以看到,測得的磁場強(qiáng)度(球半徑)幾乎恒定不變,如圖3所示。
圖3. 校準(zhǔn)前和校準(zhǔn)后的磁場比較。
使用ADIS16470和羅盤的姿態(tài)和航向參考系統(tǒng)
AHRS由三個(gè)軸上的傳感器組成,提供姿態(tài)信息,包括橫滾角、俯仰角和偏航角。AHRS是一個(gè)來自飛機(jī)導(dǎo)航的概念。我們用它來描述方向,即姿態(tài)。
在介紹我們的方法之前,有必要首先解釋為什么確定姿態(tài)需要進(jìn)行融合。事實(shí)上,我們的系統(tǒng)現(xiàn)在有三種傳感器:陀螺儀、加速器和羅盤(地磁傳感器)。
陀螺儀提供圍繞各軸的旋轉(zhuǎn)角速度。通過角速率積分計(jì)算,我們可以得到旋轉(zhuǎn)角度。如果我們知道初始航向,通過角度就始終能夠得到航向姿態(tài)。積分將累積陀螺儀的不穩(wěn)定零偏,這將導(dǎo)致角度誤差。此外,來自陀螺儀的高斯分布噪聲將積分成一個(gè)布朗運(yùn)動(dòng)過程,并導(dǎo)致隨機(jī)游走誤差。因此,我們很難長時(shí) 間使用陀螺儀,陀螺儀需要定期校準(zhǔn)。
加速度計(jì)提供每個(gè)軸方向的移動(dòng)加速度。在靜態(tài)狀態(tài)下,我們可以得到每個(gè)軸與重力加速度之間的角度。由于重力加速度在方向和值上恒定不變,我們可以獲得相對(duì)于重力方向的航向姿態(tài)。然而,該方法使用重力加速度作為參考,因此不能解出圍繞重力加速度旋轉(zhuǎn)的角度。
羅盤提供從地磁場投影的每個(gè)軸的值。我們可以從每個(gè)軸與恒為常數(shù)向量的地磁場方向之間的關(guān)系推導(dǎo)出角度值。如前一節(jié)所述,由于對(duì)外部磁場的抗擾性較差,羅盤需要一個(gè)低干擾的環(huán)境。
從這一解釋中,我們可以看到,很難靠一個(gè)傳感器來找到姿態(tài),我們需要組合使用兩個(gè)或三個(gè)傳感器并把信息融合起來。本文用加速度計(jì)、陀螺儀和地磁羅盤查找姿態(tài)。這種融合也被稱為磁、角速率和重力(MARG)系統(tǒng)。
擴(kuò)展卡爾曼濾波器的設(shè)計(jì)與傳感器融合
有多種方法可以將IMU和羅盤數(shù)據(jù)融合起來,例如互補(bǔ)濾波器、統(tǒng)計(jì)學(xué)ARMA濾波器,卡爾曼濾波器等。我們?cè)诒疚闹惺褂玫氖菙U(kuò)展卡爾曼濾波器。
首先,我們需要介紹本文中使用的一些定義。
坐標(biāo)定義
T航向或方向是兩個(gè)坐標(biāo)(即坐標(biāo)系)之間的關(guān)系。一個(gè)坐標(biāo)總在變化,另一個(gè)坐標(biāo)保持不變。對(duì)于坐標(biāo)定義方法,我們使用導(dǎo)航坐標(biāo)和體坐標(biāo)。與東北地(NED)坐標(biāo)系或地理方法相反,我們將測量的初始體坐標(biāo)值定義為導(dǎo)航坐標(biāo)系,此后該坐標(biāo)為恒定坐標(biāo)。從體坐標(biāo)到導(dǎo)航坐標(biāo)的映射(投影)矩陣定義為
姿態(tài)定義
與歐拉角或方向余弦矩陣(DCM)不同,我們?cè)谶@里使用四元數(shù),定義為
常用于導(dǎo)航以避免奇異性。
用卡爾曼濾波器更新姿態(tài)
我們?cè)诒疚闹惺褂玫倪\(yùn)動(dòng)學(xué)方程(即狀態(tài)轉(zhuǎn)移方程)是非線性微分方程,因此需要使用一個(gè)EKF,用于對(duì)該微分方程進(jìn)行一階近似。對(duì)于EKF設(shè)計(jì),我們定義
一個(gè)1×7向量作為狀態(tài)變量,其中
為角速率;
為姿態(tài)四元數(shù)。
一個(gè)1×7向量作為觀測變量,與狀態(tài)變量具有相同的分量。
一個(gè)7×7矩陣作為狀態(tài)轉(zhuǎn)移矩陣,其中,A的第一部分是角速率的數(shù)字化微分方程,第二部分是數(shù)字化四元數(shù)更新方程,后者從運(yùn)動(dòng)學(xué)方程推導(dǎo)而來。
一個(gè)7×7矩陣作為觀察矩陣。
為誤差協(xié)方差矩陣,這是一個(gè)7×7矩陣,其中
估計(jì)向量 x?真實(shí)值xx之間的誤差我們?cè)跍y試中將初始誤差設(shè)為相對(duì)較小的值。該值會(huì)自動(dòng)收斂到一個(gè)小值。
被設(shè)為狀態(tài)轉(zhuǎn)移噪聲和觀測噪聲的協(xié)方差矩陣。我們得到它們的初始值,
在保持IMU和羅盤處于靜止?fàn)顟B(tài)的同時(shí),通過測量陀螺儀和加速器的交流均方根值的平方得到。我們?cè)O(shè)
根據(jù)以上定義,卡爾曼濾波器將通過以下五個(gè)步驟完成:
步驟1:使用公式3計(jì)算卡爾曼增益K
步驟2:計(jì)算誤差協(xié)方差矩陣,P:
步驟3:輸出估算狀態(tài)x?:
步驟4:更新狀態(tài)x?–:
步驟5:更新誤差協(xié)方差矩陣P–:
該過程可以簡單地描述為圖4中的框圖。
圖4. 用于更新姿態(tài)的卡爾曼濾波器流程圖。
基于MSE的傳感器融合
在上一節(jié)中,觀測變量是
其中沒有來自羅盤的信息。由于ω是角速率,我們只能使用四 元數(shù)來導(dǎo)入羅盤數(shù)據(jù)q. 我們使用MSE方法獲得q, 即觀測變量 中的組分。
我們將各變量定義如下:
mb和ab: 體坐標(biāo)系里的羅盤磁值和加速度值。
mn和an: 導(dǎo)航坐標(biāo)系里的羅盤磁值和加速度值。
mn0和an0: 導(dǎo)航坐標(biāo)系里的初始靜態(tài)羅盤磁值和加速度值。
為從體坐標(biāo)系到導(dǎo)航坐標(biāo)系的姿態(tài)轉(zhuǎn)換矩陣,用四元數(shù)表示,可以寫成
其給出了導(dǎo)航坐標(biāo)系中初始值與實(shí)時(shí)從體坐標(biāo)系映射到導(dǎo)航坐標(biāo)系的值之間的誤差ε。
根據(jù)之前的定義,MSE方法可用于求取最優(yōu)值。
通過求方程8的最小值:
對(duì)f(q)求導(dǎo)并使其等于零,
我們將獲得方差意義上的最優(yōu)q。我們使用高斯-牛頓方法,用一階梯度收斂來求解以上非線性方程。
通過組合角速率,我們將得到觀測變量
其中融合了卡爾曼濾波器中的羅盤數(shù)據(jù)和IMU數(shù)據(jù)。
該過程可以簡單地描述為圖5中的框圖。
圖5. 使用MSE方法的傳感器融合框圖。
松耦合
如前所述,我們經(jīng)常遇到無法使用羅盤傳感器的情況。如果磁數(shù)據(jù)受到干擾,則求解的姿態(tài)精度將比僅使用IMU時(shí)更差。因此,我們使用松耦合來判斷磁傳感器是否可用。當(dāng)磁傳感器不可用時(shí),我們只用IMU來求解姿態(tài);當(dāng)磁傳感器可用時(shí),我們將使用融合算法找到姿態(tài),如圖6所示。
圖6. 姿態(tài)計(jì)算流程圖。
在獲得新數(shù)據(jù)之后或者在求解新的姿態(tài)時(shí)(在某些系統(tǒng)中,采樣周期與姿態(tài)解算周期不同,但我們?cè)诖颂庍M(jìn)行的是單采樣周期解算),我們計(jì)算加速度的大小,如果結(jié)果不等于1g, 我們 就不會(huì)使用加速器的輸出進(jìn)行姿態(tài)計(jì)算。然后我們計(jì)算羅盤輸出的大小并將其與初始值進(jìn)行比較。如果它們彼此不相等,我們就不會(huì)在此周期中使用地磁傳感器的數(shù)據(jù)。當(dāng)滿足兩個(gè)條件時(shí),我們會(huì)使用卡爾曼濾波器并執(zhí)行MSE融合。
使用ADIS16470進(jìn)行航位推算(DR)
在導(dǎo)航中,航位推算是計(jì)算當(dāng)前位置的過程,先使用先前確定的位置,然后在解算周期中基于已知或估計(jì)的速度或加速度更新該位置。這里將使用ADIS16470里的加速度計(jì)?;谏弦还?jié)解出的姿態(tài),我們可以得到捷聯(lián)系統(tǒng)的移動(dòng)方向,然后需要計(jì)算該方向上的距離,最后確定位置。
捷聯(lián)航位推算需要使用基于加速度測量的比力方程來跟蹤INS的位置。比力方程可以簡單描述為等式10、等式11和等式12:
其中ae是地球坐標(biāo)系里的加速度,ab 是體坐標(biāo)系里的加速度,ve是地球坐標(biāo)系里的速度,se是地球坐標(biāo)系里的距離,ge 是 地球坐標(biāo)系里的重力加速為[0 0 1],單位為 g。需要強(qiáng)調(diào)的是,地球坐標(biāo)系與導(dǎo)航坐標(biāo)系不同——地球坐標(biāo)系是基于NED的。該 δtt是解算周期。
用第一個(gè)等式可以得到從IMU體坐標(biāo)系到地球坐標(biāo)系的加速度映射,如格式
第二個(gè)等式將加速度積分或累加為速度;然而,由于測量的加速度包含了重力分量,所以需要減去重力。
與等式11類似,等式12將速度積分成距離。
傳統(tǒng)方法存在幾個(gè)問題。
● 加速度計(jì)輸出總是有偏置,與重力相結(jié)合后,難以從公式10中減去,因此更準(zhǔn)確的表達(dá)式應(yīng)為:
除非是用一些專業(yè)設(shè)備來測量該偏置,例如分度頭。
● 基于數(shù)值積分的實(shí)現(xiàn)方式,通常使用零階保持器方法(前一個(gè)值)進(jìn)行積分。但是,對(duì)于連續(xù)移動(dòng),這將帶來重大的誤差。例如,我們來比較以下方法:
方法1:
(零階保持器)
方法2:
(線性插值)
在5秒內(nèi)加速度為為0.5 m/s2時(shí),位移最高將相差4m。仿真結(jié)果如圖7所示。
圖7. 速度計(jì)算中的零階保持與一階積分方法比較。
基于前面的討論,基于應(yīng)用,我們修改了傳統(tǒng)比例方程中的兩個(gè)地方:
X 我們不使用地球坐標(biāo)作為導(dǎo)航坐標(biāo)系。相反,正如我們?cè)谟?jì)算先前姿態(tài)時(shí)所做的那樣,我們用初始姿態(tài)
作為導(dǎo)航坐標(biāo)系。通過這種方式,偏置和重力都可以輕松取消,如公式14所示:
雖然姿態(tài)中同時(shí)包含了偏置和重力分量,但這樣我們就不需要將它們分開成單獨(dú)的分量,而是直接一起減去它們。
基于零階保持器與一階插值之間的比較,我們使用一階方法來獲得更準(zhǔn)確的積分結(jié)果。
運(yùn)動(dòng)學(xué)模式和零速更新技術(shù)(ZUPT)
通過使用IMU的初始值作為導(dǎo)航坐標(biāo)系,我們可以消除一部分加速度的偏置影響。然而,即使我們?cè)谑褂迷O(shè)備之前能用分度頭準(zhǔn)確測量偏置,仍然很難取消,除非使用另一個(gè)精確的傳感器來定期校準(zhǔn)它。這主要是由兩個(gè)原因引起的:一是偏置不穩(wěn)定,這意味著我們之前測量的偏置不是現(xiàn)在的實(shí)際偏置。二是速度隨機(jī)游走,由加速度噪聲積分而來。前面提到的不良特性會(huì)使我們計(jì)算的距離顯著漂移。即使我們停止移動(dòng)并保持靜止,從加速度積分而來的速度仍然存在,距離仍會(huì)增加。
要解決這個(gè)問題,我們需要找到一種通過使用ZUPT技術(shù)重置速度的方法。ZUPT技術(shù)與具體的應(yīng)用密切相關(guān),因此我們需要獲得系統(tǒng)和應(yīng)用的運(yùn)動(dòng)學(xué)特征,然后給出一些算法規(guī)則。我們發(fā)現(xiàn)的運(yùn)動(dòng)學(xué)模式越多,結(jié)果就越準(zhǔn)確。
我們通過移動(dòng)帶有SINS系統(tǒng)的轉(zhuǎn)椅來進(jìn)行實(shí)驗(yàn)。由于我們的研究不限于特定應(yīng)用,我們使用以下運(yùn)動(dòng)學(xué)假設(shè):
● 對(duì)于航位推算,導(dǎo)航坐標(biāo)系中沒有z軸移動(dòng)。此限制僅適用于航位推算,不適用于姿態(tài)求解。顯然,我們是在二維空間中移動(dòng)系統(tǒng)。這有助于消除z軸誤差。
● 所有轉(zhuǎn)彎都發(fā)生在停止后。如果在移動(dòng)時(shí)發(fā)生轉(zhuǎn)彎,則會(huì)因?yàn)橐腩~外加速而干擾姿態(tài)求解。
● 如果系統(tǒng)正在移動(dòng),加速度不能保持不變超過500毫秒。速度不能保持不變超過2秒。由于我們?cè)谕苿?dòng)或拉動(dòng)轉(zhuǎn)椅,因此很難手動(dòng)使力精確地保持不變超過500毫秒,并且個(gè)人很難以勻速持續(xù)推動(dòng)轉(zhuǎn)椅2秒以上。事實(shí)上,我們正是運(yùn)用這一規(guī)則來實(shí)施ZUPT。
● 加速度不能大于±1 m/s2。該規(guī)則用于一些噪音過濾,后者基于我們施加于椅子上、不會(huì)很大的拉力或推力。
如圖8所示,當(dāng)系統(tǒng)在X方向上移動(dòng)時(shí)(投影到導(dǎo)航坐標(biāo)系后),Y方向也會(huì)產(chǎn)生加速度;積分后,Y方向速度不會(huì)為零,這意味著即使我們只是在X方向上移動(dòng),航位推算系統(tǒng)仍然會(huì)給我們帶來Y分量。
圖8. 導(dǎo)航坐標(biāo)系中三個(gè)方向的加速度。
基于第三條運(yùn)動(dòng)學(xué)假設(shè),我們可以使用ZUPT來消除此誤差。經(jīng)ZUPT處理之后的積分速度如圖9所示。
圖9. 導(dǎo)航坐標(biāo)系中三個(gè)方向的速度。
雖然我們使用了第三條假設(shè),如前所示,誤差仍然無法完全取消。誤差消除取決于設(shè)定的零加速度和零速度的判斷閾值。但是,大多數(shù)誤差已得到修正。
雖然使用了ZUPT,但有時(shí)仍然無法達(dá)到零速。這由兩個(gè)因素導(dǎo)致:
● 我們無法用ZUPT完全消除偏置不穩(wěn)定誤差和速度隨機(jī)游走。
● 我們求出的姿態(tài)有一些誤差,結(jié)果將導(dǎo)致投影(從體坐標(biāo)系到導(dǎo)航坐標(biāo)系)后的加速度誤差。
以圖10為例。圖10中的左圖是ADIS16470的原始數(shù)據(jù)(體坐標(biāo)系),圖10中的右圖是投影到導(dǎo)航坐標(biāo)系的加速度??梢钥闯?,停止移動(dòng)時(shí),投影加速度不為零。由于它總是在變化,我們此處稱之為基線漂移。
圖10. 體坐標(biāo)系(左)和導(dǎo)航坐標(biāo)系(右)的加速度。
為了消除基線漂移,我們需要實(shí)時(shí)連續(xù)獲得偏移偏置并從投影加速度中減去該值。結(jié)果如圖11所示
Figure圖11. 基線漂移消除之前(上)和之后(下)的加速度。
上圖是基線漂移消除前的加速度,下圖中的綠色軌跡是我們計(jì)算的基線偏移,紅色軌跡是基線偏移消除后的加速度。
可以使用圖12中的框圖簡要描述航位推算過程。我們將體坐標(biāo)系加速度ab和姿態(tài)轉(zhuǎn)移矩陣(來自AHRS)輸入
到DR系統(tǒng)。完成后,我們將獲得導(dǎo)航坐標(biāo)系中的位置。
圖12. 航位推算流程圖
實(shí)驗(yàn)結(jié)果與結(jié)論
實(shí)驗(yàn)結(jié)果
使用SPI端口,我們將ADIS16470評(píng)估板和RM3100羅盤評(píng)估板連接到ADI公司的ADuCM4050電路板,構(gòu)建出我們的系統(tǒng),如圖13所示。ADuCM4050 調(diào)整數(shù)據(jù)格式并進(jìn)行時(shí)間同步(因?yàn)镮MU和羅盤的數(shù)據(jù)速率不同)。然后使用UART將捕獲的數(shù)據(jù)傳輸?shù)接?jì)算機(jī)。所有計(jì)算(包括校準(zhǔn)、AHRS和DR在MATLAB)均在MATLAB®中執(zhí)行。
圖13. 實(shí)驗(yàn)平臺(tái)設(shè)置。
將評(píng)估板和計(jì)算機(jī)放在轉(zhuǎn)椅上,并在實(shí)驗(yàn)室中推著轉(zhuǎn)椅繞圈。
● AHRS輸出:姿態(tài)以四元數(shù)格式和DCM格式表示,如圖14所示。
圖14. 四元數(shù)格式(左)和DCM格式(右)的姿態(tài)。
● DR輸出:帶XYZ位置的航位推算結(jié)果和三維圖如圖15所示。
圖15. 位置計(jì)算結(jié)果。
結(jié)論
本文介紹了使用ADI公司的IMU ADIS16470和地磁傳感器RM3100構(gòu)建捷聯(lián)慣導(dǎo)系統(tǒng)的基本過程,介紹了我們使用的校準(zhǔn)、AHRS和DR方法。在平臺(tái)和實(shí)驗(yàn)環(huán)境等條件有限的情況下,很難進(jìn)一步測試平臺(tái)和算法。
有很多方法可用于改善結(jié)果,例如:
● 使用里程表或UWB距離測量方法與IMU中的加速度計(jì)融合,以在DR中獲得更準(zhǔn)確的距離值。
● 使用更復(fù)雜的運(yùn)動(dòng)學(xué)模型,從而在AHRS和DR中在傳感器和系統(tǒng)層次引入更多特性,例如系統(tǒng)的振動(dòng)、加速和減速模型、地面平整度等。這意味著為了提高導(dǎo)航結(jié)果的準(zhǔn)確性,需要給出更多的邊界條件。
● X 使用更精確的數(shù)值計(jì)算方法,比如用辛普森規(guī)則或三次樣條插值在DR中進(jìn)行積分,或者使用牛頓方法而非高斯-牛頓方法求解非線性MSE方程等。
最后但也是最重要的一點(diǎn),我們?cè)谠囼?yàn)中發(fā)現(xiàn)INS與應(yīng)用或運(yùn)動(dòng)學(xué)模型緊密相關(guān)。例如,我們?cè)趦蓚€(gè)地方進(jìn)行了實(shí)驗(yàn):未鋪地毯的實(shí)驗(yàn)室和鋪有地毯的辦公室。如果我們使用相同的參數(shù)集,DR結(jié)果會(huì)顯示出巨大的差異。因此,無論哪種應(yīng)用,例如患者跟蹤、AGV導(dǎo)航或停車定位,或者對(duì)于同一應(yīng)用中的不同條 件,我們都需要全面了解其運(yùn)動(dòng)學(xué)模型。
參考電路
1 Long Li和Zhang He,“Automatic and Adaptive Calibration Method of Tri-axial Magnetometer”(三軸磁力計(jì)的自動(dòng)和自適應(yīng)校準(zhǔn)方法),《中國儀器儀表學(xué)報(bào)》,2013。
2 Timothy Sauer,Numerical Analysis(數(shù)值分析(第2版)),Pearson,2011。
3 David H. Titterton,Strapdown Inertial Navigation Technology(捷聯(lián)慣性導(dǎo)航技術(shù)(第2版)),電氣工程師學(xué)會(huì),2004。
Gongmin, Yan,“Research on Vehicle Autonomous Positioning and Orientation System”(車輛自主定位定向系統(tǒng)研究),博士論文,中國西北工業(yè)大學(xué),2006。
Marins, João Luís,“An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG Sensors”(面向基于MARG傳感器的四元數(shù)方向估算應(yīng)用的擴(kuò)展卡爾曼濾波器),IEEE,2001。
Prikhodko、Igor P.和Brock Bearss,“Towards Self-Navigating Cars Using MEMS IMU:Challenges and Opportunities”(使用MEMS IMU邁向自動(dòng)駕駛汽車:挑戰(zhàn)與機(jī)遇),IEEE,2018。
RM3100.PNI傳感器公司,2018。
Woodman, Oliver J. “An Introduction to Inertial Navigation.” (慣性 導(dǎo)航簡介),劍橋大學(xué),2007年8月。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭金奪銀
- 輕松滿足檢測距離,勞易測新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
- 兩張圖說清楚共射極放大器為什么需要發(fā)射極電阻
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Toshiba多樣化電子元器件和半導(dǎo)體產(chǎn)品
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭金奪銀
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器