電容感應(yīng)式與毫米波雷達(dá),誰(shuí)能挑起三維觸控的大梁?
發(fā)布時(shí)間:2016-10-19 來(lái)源:李一雷 責(zé)任編輯:wenwei
【導(dǎo)讀】目前三維觸摸屏技術(shù)尚處于探索階段?,F(xiàn)在最有希望商用的三維觸摸屏技術(shù)有兩種,一種基于毫米波雷達(dá),另一種基于電容感應(yīng)。隨著電路技術(shù)的發(fā)展,即使微小的變化可以由高精度模擬放大器檢測(cè)到,因此電容傳感式三維觸控在未來(lái)的前景非常光明。那么它能獨(dú)自挑起三維觸控的大梁?jiǎn)??一起?lái)看看吧!
基于毫米波雷達(dá)技術(shù)的三維觸摸技術(shù)以Google的Project Soli為代表。今年五月份,Google正式發(fā)布了代號(hào)為Project Soli的三維觸控模組。那么,Project Soli的毫米波雷達(dá)是如何實(shí)現(xiàn)三維觸控的呢?首先我們要清楚雷達(dá)的原理。大家一定都看到過(guò)探照燈:在漆黑的天空中,探照燈的光束方向上的物體位置可以被看得一清二楚。探照燈通過(guò)不停地旋轉(zhuǎn)改變光束照射方向,于是整個(gè)天空中所有方向上物體的位置就可以被一一探知。雷達(dá)也是一樣,不過(guò)雷達(dá)發(fā)射的不是肉眼可以看到的光束,而是電磁波波束,并通過(guò)檢測(cè)電路來(lái)探知波束方向上物體的位置。很顯然,雷達(dá)也可以用在三維觸控上:手就是需要檢測(cè)的物體,通過(guò)雷達(dá)我們可以實(shí)時(shí)監(jiān)控手在空間中的位置并讓設(shè)備做出相應(yīng)反應(yīng)從而實(shí)現(xiàn)三維的人機(jī)交互,這也是Project Soli的原理。
探照燈通過(guò)改變光束方向來(lái)探測(cè)目標(biāo)(左上),雷達(dá)通過(guò)改變波束方向來(lái)掃描目標(biāo)(右上),Project Soli利用和雷達(dá)原理來(lái)探測(cè)手的位置從而實(shí)現(xiàn)三維觸控(下)
那么什么是毫米波雷達(dá)呢?它與電視里出現(xiàn)的那種巨大的雷達(dá)有什么區(qū)別呢?原來(lái),雷達(dá)的分辨率和它發(fā)射電磁波的波長(zhǎng)有關(guān),發(fā)射的電磁波波長(zhǎng)越短則分辨率越好,也即對(duì)物體探測(cè)位置越精確。但是,電磁波波長(zhǎng)越短則在空氣中的衰減會(huì)越大,因此如果物體距離雷達(dá)很遠(yuǎn)就會(huì)檢測(cè)不到。因此物體探測(cè)精度和探測(cè)距離是一對(duì)矛盾。傳統(tǒng)軍用和警用雷達(dá)使用的是微波波段,因?yàn)閭鹘y(tǒng)雷達(dá)需要檢測(cè)的物體通常尺寸很大,微波波段能做到大約10cm級(jí)別的分辨精度已經(jīng)很夠用了;
另一方面?zhèn)鹘y(tǒng)雷達(dá)需要有足夠的探測(cè)距離才能滿足使用需求。然而,10cm級(jí)別的分辨精度對(duì)于三維觸控來(lái)說(shuō)完全不夠用。另一方面,三維觸控所需要檢測(cè)的距離很短,通常手距離觸摸屏的距離不會(huì)超過(guò)20cm。最后,三維觸控模組的體積必須足夠小。因此,Project Soli使用了波長(zhǎng)為毫米數(shù)量級(jí)的毫米波雷達(dá),理論上可以實(shí)現(xiàn)毫米級(jí)別的分辨精度。該雷達(dá)可以集成到硬幣大小的芯片中,從而可以安裝在各類(lèi)設(shè)備上。
下圖是Project Soli使用的毫米波雷達(dá)傳感芯片。芯片大小約為8mm x 10mm,上面白色的小點(diǎn)應(yīng)當(dāng)是用來(lái)把芯片固定到主板上的焊錫球(bump)。芯片上還有天線陣列(綠色框內(nèi))用來(lái)實(shí)現(xiàn)波束成型。根據(jù)天線的大小我們可以估計(jì)出Project Soli使用的毫米波雷達(dá)波長(zhǎng)大約在2mm-5mm之間。
毫米波雷達(dá)用來(lái)實(shí)現(xiàn)三維觸控可以達(dá)到很高的精度。然而,它的劣勢(shì)在于功耗太大。目前即使最領(lǐng)先的毫米波雷達(dá)芯片也至少需要100mW以上的功耗,因此用在移動(dòng)設(shè)備上會(huì)導(dǎo)致電池很快就用完了。這樣一來(lái),毫米波雷達(dá)觸控比較適合使用在電源不是問(wèn)題的設(shè)備上,例如大型游戲機(jī)或者電視機(jī)上的三維觸控。
另一種非常有前景的三維觸控技術(shù)是電容感應(yīng)技術(shù)。毫米波雷達(dá)技術(shù)利用的是動(dòng)態(tài)電磁波,而電容感應(yīng)技術(shù)利用的是靜電場(chǎng)。電容感應(yīng)型三維觸控技術(shù)是目前電容觸摸屏的增強(qiáng)版:電容觸摸屏可以感應(yīng)到與屏幕接觸的手的位置,而電容感應(yīng)式三維觸控技術(shù)則增強(qiáng)了感應(yīng)范圍,在手尚未接觸到屏幕時(shí)就能感應(yīng)到手在空間中的三維位置,從而實(shí)現(xiàn)三維觸控。
為了理解電容感應(yīng)式三維觸控的原理,我們不妨想象有許多熱傳感器組成的陣列,而傳感器陣列上方有一個(gè)火苗(熱源)。根據(jù)傳感器的相對(duì)溫度分布(即哪里溫度比較高,哪里溫度比較低)我們可以知道火苗在哪一個(gè)傳感器上方(即火苗的二維位置),根據(jù)傳感器的絕對(duì)溫度(即傳感器探測(cè)到的絕對(duì)溫度有多高)我們可以知道火苗離傳感器有多遠(yuǎn)(即火苗在空間中第三維的位置)。結(jié)合這兩條信息我們可以得到火苗在空間中的三維位置。
熱傳感器陣列可以通過(guò)相對(duì)溫度分布和絕對(duì)溫度來(lái)判斷火苗在三維空間中的位置
電容傳感式三維觸控的原理也是這樣,只不過(guò)這里探測(cè)的不是火苗帶來(lái)的溫度改變而是手指帶來(lái)的靜電場(chǎng)改變。通過(guò)探測(cè)哪一個(gè)電容傳感器探測(cè)到的靜電場(chǎng)改變最大我們可以感應(yīng)到手指的二維位置,而通過(guò)電容傳感器探測(cè)到靜電場(chǎng)改變的絕對(duì)強(qiáng)度我們可以感應(yīng)到手指的第三維坐標(biāo),從而實(shí)現(xiàn)三維觸控。
電容傳感式三維觸控的優(yōu)勢(shì)在于傳感器的功耗可以遠(yuǎn)遠(yuǎn)小于毫米波雷達(dá)(大約僅僅是毫米波雷達(dá)的十分之一甚至更小),因此可以安裝在對(duì)功耗比較敏感的移動(dòng)設(shè)備上。但是電容傳感也有自己的問(wèn)題需要解決,就是傳感器之間的互相干擾。我們同樣拿熱傳感器感應(yīng)火苗位置來(lái)作類(lèi)比。現(xiàn)在我們假設(shè)除了火苗會(huì)發(fā)熱以外,熱傳感器自己也會(huì)發(fā)熱。
這樣一來(lái),如果火苗離熱傳感器距離較遠(yuǎn),那么它帶來(lái)的溫度變化相對(duì)于熱傳感器自己的發(fā)熱可能微不足道,從而熱傳感器需要相當(dāng)高的探測(cè)精度才能根據(jù)溫度變化檢測(cè)到火苗的位置。電容傳感式三維觸控也是如此:電容傳感器之間的電場(chǎng)會(huì)互相耦合形成很大的電容,因此手指造成的靜電場(chǎng)變化需要精度非常高的探測(cè)器才能檢測(cè)到。好在隨著電路技術(shù)的發(fā)展,即使微小的變化可以由高精度模擬放大器檢測(cè)到,因此電容傳感式三維觸控在未來(lái)的前景非常光明。
目前在電容傳感式三維觸控已經(jīng)出現(xiàn)在微軟的pre-touch screen demo中,該demo可以實(shí)現(xiàn)離屏幕較近距離(1-2cm)的三維觸控。另一方面,不少頂尖高校的實(shí)驗(yàn)室也展示了基于電容傳感原理的三維觸控模塊。例如,普林斯頓大學(xué)由Naveen Verma教授領(lǐng)銜的團(tuán)隊(duì)成功地展示了基于薄膜電子的三維觸控(目前成立了SpaceTouch公司),有機(jī)會(huì)可以用在未來(lái)可彎曲屏幕上。
此外,UCLA由Frank Chang教授和Li Du博士帶領(lǐng)的Airtouch團(tuán)隊(duì)使用傳統(tǒng)低成本CMOS工藝制作的芯片配合普通手機(jī)觸摸屏已經(jīng)可以實(shí)現(xiàn)距離屏幕10cm范圍內(nèi)的三維觸控。該芯片最初于2015年在國(guó)際固態(tài)半導(dǎo)體會(huì)議上發(fā)表(ISSCC,全球芯片領(lǐng)域最高規(guī)格的會(huì)議,號(hào)稱(chēng)芯片界的奧林匹克盛會(huì)),之后團(tuán)隊(duì)又乘熱打鐵將深度學(xué)習(xí)與三維觸控芯片結(jié)合在一起用于高精度三維手勢(shì)識(shí)別,并應(yīng)邀在2016年的自動(dòng)設(shè)計(jì)會(huì)議(DAC,全球電子設(shè)計(jì)領(lǐng)域最高規(guī)格的會(huì)議之一)發(fā)表了最新成果。Airtouch芯片功耗僅2 mW(遠(yuǎn)遠(yuǎn)小于Google的毫米波雷達(dá)觸控方案),且與普通觸摸屏兼容,將來(lái)可以廣泛地應(yīng)用于手機(jī)等移動(dòng)設(shè)備的三維觸控。
結(jié)語(yǔ)
觸控技術(shù)經(jīng)歷數(shù)十年的發(fā)展,到今天已經(jīng)能夠超越傳統(tǒng)二維觸控而進(jìn)入三維觸控領(lǐng)域了。三維觸控會(huì)帶來(lái)人機(jī)交互方式的革新,可以用于游戲、AR/VR等等應(yīng)用中。目前較有希望商用的三維觸控方案包括毫米波雷達(dá)(Google Project Soli為代表)和電容感應(yīng)(UCLA Airtouch為代表)。我們可望在不久的將來(lái)就看到三維觸控走入千家萬(wàn)戶,成為人機(jī)交互的基本方式。
(本文節(jié)選自矽說(shuō),原文作者李一雷,原標(biāo)題為《突破“二向箔”的束縛:三維觸控技術(shù)》)
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
- 兩張圖說(shuō)清楚共射極放大器為什么需要發(fā)射極電阻
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Toshiba多樣化電子元器件和半導(dǎo)體產(chǎn)品
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開(kāi)關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車(chē)
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器