-
IIC為何需要用開(kāi)漏輸出和上拉電阻?
最近在調(diào)ICM20602模塊(一個(gè)六軸陀螺儀和加速度計(jì)), 使用IIC通信協(xié)議, 這個(gè)過(guò)程中遇到一個(gè)困擾我很長(zhǎng)時(shí)間的問(wèn)題。IIC協(xié)議正確, 但是一直讀取失敗.最后發(fā)現(xiàn)因?yàn)闆](méi)配置GPIO為開(kāi)漏輸出。
2021-02-16
-
升壓變流器的幾點(diǎn)調(diào)試經(jīng)驗(yàn)
DC/DC 變流器IC可能在整個(gè)產(chǎn)品系統(tǒng)的并不起眼,但它們對(duì)產(chǎn)品的穩(wěn)定可靠工作至關(guān)重要。盡管TI 提供詳細(xì)的規(guī)格書(shū)和應(yīng)用文檔幫助客戶在系統(tǒng)上正確地實(shí)現(xiàn)變流器IC的功能,在實(shí)際應(yīng)用中依然因?yàn)榉N種原因?qū)е?span id="igyumpi" class='red'>IC不正常工作問(wèn)題,例如啟動(dòng)異常,輸出電壓不穩(wěn)定,紋波過(guò)大甚至IC損壞等等。大部分時(shí)候,引起IC異常工作的原因并不復(fù)雜,簡(jiǎn)單的調(diào)試可以快速地定位并解決問(wèn)題。這篇文章介紹幾點(diǎn)針對(duì)升壓變流器的調(diào)試經(jīng)驗(yàn)。
2021-02-16
-
新ANSI/ESDA/JEDEC JS-002 CDM測(cè)試標(biāo)準(zhǔn)概覽
元件充電模式(CDM) ESD被認(rèn)為是代表ESD充電和快速放電的首要實(shí)際ESD模型,能夠恰如其分地表示當(dāng)今集成電路(IC)制造和裝配中使用的自動(dòng)處理設(shè)備所發(fā)生的情況。到目前為止,在制造環(huán)境下的器件處理過(guò)程中,IC的ESD損害的最大原因是來(lái)自充電器件事件,這一點(diǎn)已廣為人知。1
2021-02-09
-
為系統(tǒng)安全選擇電壓檢測(cè)器、監(jiān)控器和復(fù)位IC:第1部分
電信、工業(yè)和航空電子應(yīng)用中的電源電壓可能由于許多原因而變化,例如線路和負(fù)載瞬變;停電;或低電量。電壓檢測(cè)器和監(jiān)控器/復(fù)位集成電路(IC)提供了與這些問(wèn)題相關(guān)的電源電壓偏差的預(yù)指示,以幫助保護(hù)系統(tǒng)。
2021-02-09
-
為系統(tǒng)安全選擇電壓檢測(cè)器、監(jiān)控器和復(fù)位IC:第2部分
在本系列的第一部分中,我定義了電壓檢測(cè)器和監(jiān)控器/復(fù)位IC,并解釋了不同的輸出類型及一些基本設(shè)備。由于設(shè)計(jì)變得更加復(fù)雜,可能需要更高級(jí)的設(shè)備來(lái)成功監(jiān)視電壓。在本期中,我將重點(diǎn)介紹電壓檢測(cè)器和監(jiān)控器/復(fù)位IC中的各種功能,以幫助設(shè)計(jì)人員選擇正確的電路。
2021-02-09
-
物聯(lián)網(wǎng)系統(tǒng)需要高集成度和小尺寸功率轉(zhuǎn)換器件
在功率譜的中低端存在一些不太大的功率轉(zhuǎn)換要求,這在物聯(lián)網(wǎng)(IoT)設(shè)備之類的應(yīng)用中很常見(jiàn)。這些應(yīng)用需要使用能夠處理適度電流水平的功率轉(zhuǎn)換IC。電流通常在數(shù)百毫安范圍,但如果板載功率放大器為了傳輸數(shù)據(jù)或視頻而存在峰值功率需求,那么電流量可能更高。因此,隨著支持眾多物聯(lián)網(wǎng)器件的無(wú)線傳感器的激增,業(yè)界對(duì)專門用于空間和散熱受限器件的小型、緊湊、高效功率轉(zhuǎn)換器的需求在不斷增加。
2021-02-08
-
如何準(zhǔn)確地測(cè)量芯片的電源噪聲
隨著5G、車聯(lián)網(wǎng)等技術(shù)的飛速發(fā)展,信號(hào)的傳輸速度越來(lái)越快,集成電路芯片的供電電壓隨之越來(lái)越小。早期芯片的供電通常是5V和3.3V,而現(xiàn)在高速IC的供電電壓已經(jīng)到了2.5V、1.8V或1.5V,有的芯片的核電壓甚至到了1V。芯片的供電電壓越小,電壓波動(dòng)的容忍度也變得越苛刻。對(duì)于這類供電電壓較小的高速芯片的電壓測(cè)試用電源噪聲表示,測(cè)求要求從±5%到 ±-1.5%,乃至更低。
2021-02-05
-
集成電路是如何被發(fā)明的?
也許上天有意要人類發(fā)明出集成電路(IC:Integrated Circuit),幾乎在同時(shí),兩組人在個(gè)不知曉對(duì)方發(fā)明工作的情況下,獨(dú)立設(shè)計(jì)出幾乎相同的集成電路。
2021-02-05
-
開(kāi)關(guān)IC控制器的去耦旁路設(shè)計(jì)
旁路和去耦是指防止有用能量從一個(gè)電路傳到另一個(gè)電路中,并改變?cè)肼暷芰康膫鬏斅窂?,從而提高電源分配網(wǎng)絡(luò)的品質(zhì)。它有三個(gè)基本概念:電源、地平面,元件和內(nèi)層的電源連接。
2021-02-05
-
接收器IC混合式混頻器、頻率合成器和IF放大器
無(wú)線基站曾經(jīng)封裝在采用氣候控制技術(shù)的大型空間中,但現(xiàn)在卻可以裝在任意地方。隨著無(wú)線網(wǎng)絡(luò)服務(wù)提供商試圖實(shí)現(xiàn)全域信號(hào)覆蓋,基站組件提供商面臨壓力,需要在更小的封裝中提供更多的功能。
2021-02-03
-
采用具有驅(qū)動(dòng)器源極引腳的低電感表貼封裝的SiC MOSFET
人們普遍認(rèn)為,SiCMOSFET可以實(shí)現(xiàn)非??斓拈_(kāi)關(guān)速度,有助于顯著降低電力電子領(lǐng)域功率轉(zhuǎn)換過(guò)程中的能量損耗。然而,由于傳統(tǒng)功率半導(dǎo)體封裝的限制,在實(shí)際應(yīng)用中并不總是能發(fā)揮SiC元器件的全部潛力。在本文中,我們首先討論傳統(tǒng)封裝的一些局限性,然后介紹采用更好的封裝形式所帶來(lái)的好處。最后,展示對(duì)使用了圖騰柱(Totem-Pole)拓?fù)涞?.7kW單相PFC進(jìn)行封裝改進(jìn)后獲得的改善效果。
2021-02-03
-
交錯(cuò)式反相電荷泵——第二部分:實(shí)現(xiàn)和結(jié)果
本系列文章的第一部分介紹了一種從正電源產(chǎn)生低噪聲負(fù)電源軌的獨(dú)特方法,并說(shuō)明了控制其運(yùn)行的方程式推導(dǎo)過(guò)程。第二部分將借助ADI公司新產(chǎn)品 ADP5600深入探討這種交錯(cuò)式反相電荷泵(IICP)的實(shí)際例子。我們將ADP5600的電壓紋波和電磁輻射干擾與標(biāo)準(zhǔn)反相電荷泵進(jìn)行比較,以揭示交錯(cuò)如何改善低噪聲性能。我們還將其應(yīng)用于低噪聲相控陣波束成型電路,并使用第一部分中的公式來(lái)優(yōu)化該解決方案的性能。
2021-02-02
- 伺服驅(qū)動(dòng)器賦能工業(yè)自動(dòng)化:多場(chǎng)景應(yīng)用方案深度解析
- 10年壽命+零下40℃耐寒:廢物管理物聯(lián)網(wǎng)設(shè)備的電池選型密碼
- 從混動(dòng)支線機(jī)到氫能飛行器:Vicor模塊化電源的航空減碳路線圖
- 意法半導(dǎo)體披露公司全球計(jì)劃細(xì)節(jié),重塑制造布局和調(diào)整全球成本基數(shù)
- 動(dòng)態(tài)存儲(chǔ)重構(gòu)技術(shù)落地!意法半導(dǎo)體全球首發(fā)可編程車規(guī)MCU破解域控制器算力僵局
- 深度解析電壓基準(zhǔn)補(bǔ)償在熱電偶冷端溫度補(bǔ)償中的應(yīng)用
- 如何為特定應(yīng)用選擇位置傳感器?技術(shù)選型方法有哪些?
- 激光器溫度精準(zhǔn)控制,光纖通信系統(tǒng)的量子級(jí)精度躍遷
- 高精度電路噪聲飆升?解密運(yùn)放輸入電容降噪的「三重暴擊」與反殺策略
- 精度/成本/抗干擾怎么平衡?6步攻克角度傳感器選型難題
- 全國(guó)集成電路標(biāo)準(zhǔn)化技術(shù)委員會(huì)首次“標(biāo)準(zhǔn)周”活動(dòng)在滬舉辦
- 高電壓動(dòng)態(tài)響應(yīng)測(cè)試:快速負(fù)載切換下的擺率特性研究
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall