你的位置:首頁 > RF/微波 > 正文

提供顯著跳頻優(yōu)勢的下一代軟件定義無線電(SDR)收發(fā)器

發(fā)布時間:2021-11-12 來源:ADI,Michelle Tan 責(zé)任編輯:wenwei

【導(dǎo)讀】本文深入探討了跳頻(FH)的概念,以及如何通過靈活設(shè)計(jì) ADRV9002 SDR 收發(fā)器的鎖相環(huán)(PLL)架構(gòu)來實(shí)現(xiàn)四大跳頻特性。這些特性可為用戶提供強(qiáng)大的跳頻功能,讓他們能夠處理單通道和雙通道操作模式下的Link 16和快速實(shí)時載波頻率負(fù)載等應(yīng)用。此外,跳頻與多芯片同步(MCS)和數(shù)字預(yù)失真(DPD)技術(shù)的結(jié)合使ADRV9002 SDR收發(fā)器成為一種非常有吸引力的解決方案,可滿足當(dāng)今復(fù)雜通信系統(tǒng)中的更高要求。


簡介


與傳統(tǒng)的無線電通信不同,跳頻(FH)定義了一種通過快速改變載波頻率1來發(fā)送無線電信號的方法,Nikola Tesla在1903年的美國專利"信號傳輸方法"中首次提到了這種方法。后來,在1942年,女演員Hedy Lamarr和作曲家George Antheil進(jìn)一步鞏固了這一概念,他們從鋼琴的按鍵數(shù)量得到啟發(fā),在88個頻率之間切換,以防止魚雷的無線電控制受到干擾。一百多年來,從第一次世界大戰(zhàn)中固定指揮點(diǎn)之間的非實(shí)時、低速通信,到當(dāng)代飛機(jī)、艦船和陸地系統(tǒng)之間的實(shí)時、高速多媒體通信,跳頻在軍事領(lǐng)域的應(yīng)用已進(jìn)入了一個嶄新的時代。此外,跳頻已廣泛應(yīng)用于許多無線個人通信網(wǎng)絡(luò),如藍(lán)牙?個人局域網(wǎng)(PAN),以及消費(fèi)電子和業(yè)余無線電領(lǐng)域,如對講機(jī)、汽車模型和無人機(jī)。


什么是跳頻?


跳頻的概念如圖1所示。如果將整個頻帶和持續(xù)時間劃分為二維網(wǎng)格,那么在任何給定的時隙,將會使用不同的頻率子帶進(jìn)行通信。跳頻模式的隨機(jī)性相當(dāng)于增加了另一個只能在發(fā)送器和接收器之間解碼的安全層,使其具有較高的抗窄帶干擾能力和較強(qiáng)的抗惡意攔截和封鎖的能力。此外,跳頻信號相互干擾小,可以和其他傳統(tǒng)通信共享帶寬,實(shí)現(xiàn)更高的頻譜效率。隨著跳頻速率加快且使用更多的子頻帶,跳頻的優(yōu)勢變得更加突出,成為對許多不同應(yīng)用有吸引力的解決方案。


1636521530361366.png

圖1. 跳頻的概念。 


下一代SDR收發(fā)器


ADRV9002是一款雙窄帶和寬帶SDR收發(fā)器,提供出色的RF性能和先進(jìn)的系統(tǒng)功能,例如DPD和跳頻。ADRV9002的工作頻率為30 MHz至6 GHz,覆蓋超高頻(UHF)頻帶;特高頻(VHF)頻帶;工業(yè)、科學(xué)和醫(yī)療(ISM)頻帶和蜂窩頻段??梢灾С终瓗?kHz)和不超過40 MHz的寬帶操作。圖2顯示了ADRV9002的簡化示意框圖。其中包括發(fā)送和接收雙通道,以及一組高級數(shù)字信號處理算法。許多其他收發(fā)器都是將一個PLL專用于接收數(shù)據(jù)路徑,另一個專用于發(fā)送數(shù)據(jù)路徑,而以紅色方框中顯示的ADRV9002 PLL結(jié)構(gòu)則比較獨(dú)特,它在器件中使用兩個RF PLL,并且可以選擇將兩個PLL提供給任何接收器或發(fā)送器使用,兩個一起用或一個都不用。這種靈活性是在各種TDD應(yīng)用中支持跳頻的關(guān)鍵,例如單通道和雙通道操作,包括僅發(fā)送模式(1T/2T)、僅接收模式(1R/2R)和發(fā)送/接收模式(1T1R/2T2R)。雙通道操作支持通道分集和通道多路復(fù)用。此外,可以在乒乓模式下使用兩個PLL,以滿足嚴(yán)格的跳頻時序要求。


1636521513979063.png

圖2. 采用靈活的PLL設(shè)計(jì)的ADRV9002簡化示意框圖。


ADRV9002的四大跳頻特性


通過兩個PLL多路復(fù)用和PLL快速重新調(diào)諧實(shí)現(xiàn)特快速跳頻

跳頻是通過在切換到不同頻率之前重新調(diào)諧PLL來實(shí)現(xiàn)的。ADRV9002根據(jù)PLL的使用情況提供不同的跳頻模式。2圖1中的每個時隙代表一個跳幀,可以分為一個轉(zhuǎn)換時間段和一個停留時間段,如圖3所示。


1636521497848816.png

圖3. 跳幀結(jié)構(gòu)。


在較慢的跳頻模式下,如果頻率變化之間的轉(zhuǎn)換時間足夠長(比通道設(shè)置時間和所需的PLL調(diào)諧時間長),則TDD操作中的一對發(fā)送和接收通道只需要一個PLL(稱為一個PLL重新調(diào)諧模式)。為了實(shí)現(xiàn)更快的跳頻和更短的轉(zhuǎn)換時間(比通道設(shè)置時間和所需的PLL調(diào)諧時間短),在器件中則可以使用兩個鎖相環(huán)(稱為兩個PLL多路復(fù)用模式)。兩個PLL以乒乓方式相互協(xié)調(diào):當(dāng)一個PLL用于當(dāng)前頻率時,另一個PLL則重新調(diào)諧至下一個頻率。這樣就可以實(shí)現(xiàn)快速跳頻,從而大大縮短不同頻率變化之間所需的轉(zhuǎn)換時間。表1總結(jié)了這兩種模式。


表1. ADRV9002跳頻模式(基于PLL的使用情況)

1636521474158055.png


如表1所示,要選擇兩種模式中的哪一種,由用戶定義的轉(zhuǎn)換時間決定。


圖4進(jìn)一步解釋了PLL多路復(fù)用模式概念。如前所述,每個時隙代表一個跳幀,它由一個轉(zhuǎn)換時間段和一個停留時間段組成。當(dāng)一個PLL在停留時間內(nèi)使用時,另一個PLL從同一跳幀的轉(zhuǎn)換時間開始時即開始進(jìn)行調(diào)諧。它可以一直進(jìn)行調(diào)諧,直到下一個跳幀的轉(zhuǎn)換時間段結(jié)束為止。所以,只要所需的PLL調(diào)諧時間比一次停留時間和兩次轉(zhuǎn)換時間的總和短,PLL多路復(fù)用模式就是成功的。


1636521457237719.png

圖4. 用于快速跳頻的PLL多路復(fù)用模式。


PLL多路復(fù)用模式下的跳頻對軍事應(yīng)用來說至關(guān)重要,例如Link 16。Link 16被認(rèn)為是北大西洋公約組織(NATO)使用的最重要的戰(zhàn)術(shù)數(shù)據(jù)鏈路標(biāo)準(zhǔn)之一,它使用960 MHz至1.215 GHz射頻頻段的抗干擾高速數(shù)字?jǐn)?shù)據(jù)鏈路。3通過在初始化時準(zhǔn)確校準(zhǔn)整個跳頻范圍,ADRV9002采用快速PLL重新調(diào)諧模式來滿足嚴(yán)格的時序要求。PLL重新調(diào)諧時間取決于ADRV9002 PLL參考時鐘速率。表2顯示在不同的PLL參考時鐘速率下所需的快速PLL重新調(diào)諧時間。PLL參考時鐘速率為300 MHz時,快速PLL重新調(diào)諧時間約為15 μs。Link 16的跳幀長度為13 μs時,如果轉(zhuǎn)換時間大于2 μs,在使用PLL多路復(fù)用模式時使用15 μs的PLL重新調(diào)諧時間即可滿足時序要求,具體如表1所示。


表2. 使用快速PLL重新調(diào)諧模式時的PLL重新調(diào)諧時間

1636521442717802.png


正如論文"在存在窄帶干擾的情況下,通過緩慢、平坦的Nakagami 衰減通道傳輸?shù)腏TIDS/Link 16型波形的性能分析"3中所述,Link 16消息數(shù)據(jù)可以作為單脈沖或雙脈沖發(fā)送,具體由打包結(jié)構(gòu)決定。單脈沖結(jié)構(gòu)包含6.4 μs開啟時間和6.6 μs關(guān)閉時間,總持續(xù)時間為13 μs。雙脈沖結(jié)構(gòu)由兩個單脈沖組成,它們傳輸相同的數(shù)據(jù),但使用不同的載波頻率,如圖5所示。所以,轉(zhuǎn)換時間大致為6.6 μs (>2 μs),因此使用ADRV9002實(shí)現(xiàn)Link 16跳頻是完全可行的。


10.png

圖5. 標(biāo)準(zhǔn)的Link 16雙脈沖結(jié)構(gòu)。


圖6顯示ADRV9002發(fā)送輸出(功率與時間以及頻率與時間之間的關(guān)系),采用Link 16型跳幀(為簡化起見,僅使用發(fā)送跳頻)。注意,為了顯示ADRV9002可實(shí)現(xiàn)的最短轉(zhuǎn)換時間,實(shí)驗(yàn)未使用圖5中所示的標(biāo)準(zhǔn)Link 16脈沖結(jié)構(gòu),而是開啟時間從6.4 μs增加到11 μs,關(guān)閉時間從6.6 μs縮短到2 μs。將Tektronix RSA306B頻譜分析儀連接至ADRV9002評估板的發(fā)送輸出端口,以進(jìn)行觀察。上方的圖顯示功率與時間的關(guān)系。從圖中可以看出,每隔13 μs就會進(jìn)行發(fā)送跳頻,連續(xù)發(fā)送跳幀之間的轉(zhuǎn)換時間大約為3 μs。下方的圖顯示頻率與時間的關(guān)系。在這個實(shí)驗(yàn)中,發(fā)送載波頻率以1 MHz的步長在四個不同的頻率之間循環(huán)。正如預(yù)期的一樣,下方的圖證實(shí)了發(fā)送輸出也以1 MHz的步長在四個不同的頻率之間循環(huán),并且在整個停留時間段內(nèi)都具備出色的頻率精度。


11.jpg

圖6. Link 16 Tx跳頻的發(fā)送輸出。


通過使用更先進(jìn)的測試設(shè)備(例如Keysight E5052B和R&S FSWP)可以進(jìn)一步測量Link 16跳頻的頻率精度。在表3所示的測量示例中,發(fā)送載波頻率在400 MHz、400.1 MHz、400.2 MHz和400.3 MHz時跳頻。發(fā)送輸入信號也相應(yīng)的同步變換頻率從而使所有跳幀生成400 MHz的頻率輸出。測量持續(xù)時間設(shè)置為100 μs,其中包括7個完整的跳幀。每隔128 ns測量一次頻率。可以看出,在停留時間開始時,PLL已經(jīng)完全鎖定。停留時間期間的頻率誤差取決于相位噪聲性能。表3顯示這7個連續(xù)跳幀的平均、最大和最小頻率偏移(輸出頻率和400 MHz之間的絕對差值)性能。在大多數(shù)幀中,平均頻率誤差低于1 ppm。數(shù)十次實(shí)驗(yàn)顯示出同樣的結(jié)果。注意,測量值可能因設(shè)備和測試配置而異。


表3. Link 16跳頻的頻率精度性能

1636521408190857.png


ADRV9002還提供了用戶微調(diào)PLL環(huán)路濾波器帶寬的能力。當(dāng)PLL環(huán)路濾波器帶寬配置為1200 kHz時,可以實(shí)現(xiàn)表3所示的性能。較大的PLL濾波器帶寬可以減少PLL重新調(diào)諧時間,確保在停留時間開始前PLL完全鎖定。建議用戶進(jìn)一步評估其應(yīng)用中所需的相位噪聲性能來選擇最合適的環(huán)路濾波器帶寬。


使用靜態(tài)和動態(tài)的方式加載高達(dá)128個不同頻率的跳頻表


ADRV9002針對所有跳頻模式使用跳頻表概念。2跳頻表中的每一項(xiàng)包含了跳幀的頻率和其他操作參數(shù)。跳頻表可以是靜態(tài)加載的,這表示它在初始化期間加載,之后不允許即時更改。它也可以是動態(tài)加載的,即在執(zhí)行跳頻期間加載;在這種情況下,用戶可以即時更改表的內(nèi)容。此外,還使用了類似乒乓的概念,因此用戶可以選擇性地加載兩個不同的表,每個表包含最少1個、最多64個項(xiàng)。在一個表用于當(dāng)前跳幀時,加載另一個表,準(zhǔn)備用于下一個跳幀。每個項(xiàng)都會通知ADRV9002關(guān)于某個跳幀的配置。可以通過自動遞增索引方式(如果是兩個跳頻表,則是從第一個表的第一項(xiàng)開始,到第二個表的最后一項(xiàng),然后重新回到第一個表的第一項(xiàng),如果是一個跳頻表,則是連續(xù)循環(huán)),或通過數(shù)字GPIO指示的特定項(xiàng)對跳頻表進(jìn)行隨時索引。


圖7顯示跳頻表A和B,每個包含N個項(xiàng)(1 ≤ N ≤ 64)。表中的每個項(xiàng)包含4個重要參數(shù):跳頻、中頻(僅用于接收IF模式)、接收增益表的索引,以及發(fā)送衰減。在TDD操作中,用戶必須通過專用的通道設(shè)置信號(每個發(fā)送通道一個,每個接收通道一個)來通知ADRV9002為每個跳幀啟用了哪個通道(發(fā)送或接收)。所以,盡管跳頻表中的每個項(xiàng)都同時包含接收和發(fā)送參數(shù),但只會使用相關(guān)參數(shù)。


1636521387466794.png

圖7. ADRV9002跳頻表內(nèi)容和索引方法。


在進(jìn)一步探討如何在跳頻模式中使用跳頻表之前,需要先了解ADRV9002和基帶集成電路(BBIC)之間的大體的通信方式。


如圖8所示,BBIC作為跳頻操作的主要部分,會設(shè)置跳頻模式、通道設(shè)置信號(Rx1_ENBALE、Rx2_ENABLE、Tx1_ENABLE和Tx2_ENABLE)、HOP信號(HOP1和HOP2),以及靜態(tài)或動態(tài)跳頻表(包含跳頻、接收IF頻率、接收增益表的索引和發(fā)送衰減)。BBIC通過SPI接口或DGPIO與ADRV9002通信。ADRV9002作為一個節(jié)點(diǎn)接收來自BBIC的信號,然后相應(yīng)地配置數(shù)據(jù)路徑和LO進(jìn)行跳頻。


1636521371549748.png

圖8. ADRV9002和BBIC如何在跳頻期間互相通信的大概框圖。


圖9所示為一個動態(tài)表示例,每個跳頻表A和B僅加載一個頻率。這是一種極端情況,允許用戶即時更改每個幀的跳頻。本示例使用PLL多路復(fù)用模式。如圖8所示,跳頻信號的上升沿和下降沿定義跳幀的時序邊界,如之前所述,每個跳幀由轉(zhuǎn)換時間和停留時間組成。通道設(shè)置信號上升沿定義一個幀延遲(在PLL多路復(fù)用模式下,這種延遲是必要的)之后的跳幀類型。


1636521356400711.png圖9. 在PLL多路復(fù)用模式下,動態(tài)的使用跳頻表加載一個頻率的示例。


注意,通道設(shè)置信號既可以表示發(fā)送設(shè)置信號,也可以表示接收設(shè)置信號。圖9顯示了該信號的簡化版本示意圖。由于TDD操作同時涉及發(fā)送和接收,用戶需要分別配置發(fā)送設(shè)置信號和接收設(shè)置信號。除了指示跳幀類型,通道設(shè)置信號還可以用來觸發(fā)BBIC進(jìn)行跳頻表加載。跳頻表加載應(yīng)在通道設(shè)置信號下降沿之后的那個跳頻信號沿之前完成,然后PLL在同一跳頻信號邊沿開始調(diào)諧到該頻率,并為由下一個跳頻邊沿指示的下一個跳幀做好準(zhǔn)備。表A和表B以乒乓模式運(yùn)行,這樣加載完成后,一個表的頻率用來進(jìn)行跳頻操作,同時對另一個表的頻率實(shí)施調(diào)諧。


圖10顯示通過動態(tài)方式使跳頻表每次加載4個項(xiàng)和8個項(xiàng)時發(fā)送輸出頻率與時間之間的關(guān)系。發(fā)送輸入具有0 kHz、–100 kHz、–200 kHz和–300 kHz頻率的4個幀,并通過連續(xù)循環(huán)這些幀將其饋送到ADRV9002。它與跳幀完全匹配和同步,所以0 kHz輸入幀對應(yīng)3.1 GHz LO。跳頻期間,當(dāng)LO變更為下一頻率,發(fā)送輸入頻率也變更為下一頻率。


16.jpg

圖10. 用動態(tài)加載跳頻表的方法每次載入4項(xiàng)和8項(xiàng)的跳頻結(jié)果比較。


在執(zhí)行跳頻時,動態(tài)加載表A和表B(為了簡化和便于觀察,每次加載時表內(nèi)容不改變)。對于每次加載4項(xiàng),在3.1 GHz輸出頻率會看到四個連續(xù)的發(fā)送輸出幀,然后在3.1004 GHz輸出頻率也會看到四個連續(xù)的發(fā)送輸出幀,然后以這種模式循環(huán)往復(fù)。對于每次加載8項(xiàng),在3.1 GHz輸出頻率會看到四個連續(xù)的發(fā)送輸出幀,在3.1004 GHz輸出頻率4個連續(xù)幀,在3.1008 Hz輸出頻率四個連續(xù)幀,以及3.1012 GHz輸出頻率四個連續(xù)幀,然后以這種模式循環(huán)往復(fù)。圖8所示的發(fā)送輸出證實(shí)動態(tài)表加載操作如預(yù)期完全一致。


使用雙通道來實(shí)現(xiàn)通道分集與通道多路復(fù)用


如圖2所示,ADRV9002支持發(fā)送和接收雙通道??梢詫蓚€通道應(yīng)用跳頻,以實(shí)現(xiàn)通道分集或通道多路復(fù)用。


要實(shí)現(xiàn)分集,需使用同樣的PLL(一個或兩個)、同樣的跳頻表和TDD時序配置使兩個通道同時跳頻。用戶可以啟用ADRV9002提供的MCS功能,確保同一個或不同ADRV9002器件上的多個通道彼此完全同步,以保證確定性延遲。還可以通過MCS實(shí)現(xiàn)相位同步,但必須在每次PLL重新調(diào)諧頻率時執(zhí)行相應(yīng)操作。通過MCS,實(shí)現(xiàn)了多個通道在跳頻期間的同步,使ADRV9002成為 對涉及跳頻的MIMO分集應(yīng)用來說非常有吸引力的解決方案。了解在跳頻期間使用MCS的要求和限制的更多詳細(xì)信息,請參閱 ADRV9001系統(tǒng)開發(fā)用戶指南。2


對于通道多路復(fù)用,每對發(fā)送和接受通道使用一個PLL,彼此獨(dú)立地執(zhí)行跳頻。其中一個限制是特快跳頻(要求為一個發(fā)送和接收通道對配備兩個PLL)無法用于使一個ADRV9002器件的兩對通道進(jìn)行多路復(fù)用。


除了2T2R模式,還值得一提的是:ADRV9002還支持1T2R和2T1R的跳頻操作,因而可以更靈活地滿足用戶的特定要求。


支持跳頻與DPD操作同時進(jìn)行


ADRV9002還支持窄帶和寬帶應(yīng)用的DPD操作。它在實(shí)現(xiàn)符合標(biāo)準(zhǔn)的相鄰?fù)ǖ拦β市孤┍?ACPR)性能的同時,修正功率放大器(PA)的非線性,從而顯著提高功率放大器的效率。


ADRV9002的一個高級功能是DPD可以和跳頻一起執(zhí)行。在這種情況下,ADRV9002允許用戶配置多達(dá)8個頻率區(qū)域,而DPD算法為每個頻率區(qū)域創(chuàng)建一個優(yōu)化解決方案。針對每個區(qū)域,DPD解決方案作為一組系數(shù),可以分別在傳輸開始和結(jié)束時進(jìn)行存儲和加載。這可以確保在整個跳頻范圍內(nèi)保持PA線性度。


由于DPD是一個自適應(yīng)濾波過程,必須周期性地捕獲一組樣本進(jìn)行系數(shù)計(jì)算,因此跳幀長度需要足夠長才能滿足DPD捕獲長度要求。但是,如果用戶只使用初始加載的DPD系數(shù),無需進(jìn)行DPD更新,則不存在這種限制。


ADRV9002的跟蹤校準(zhǔn)通常不會在快速跳頻期間進(jìn)行。但是,會根據(jù)用戶的跳頻配置,基于多個頻率區(qū)域執(zhí)行初始校準(zhǔn),以實(shí)現(xiàn)最佳性能。


使用ADRV9002收發(fā)器評估軟件(TES)進(jìn)行跳頻性能評估


用戶可以通過ADRV9002 TES軟件在評估板上充分測試跳頻性能。TES支持Xilinx? ZC706和ZCU102 FPGA評估板。2如圖11所示,可以輕松使用跳頻配置頁面來配置跳頻參數(shù),包括跳頻操作模式、跳頻表、GPIO設(shè)置和TDD時序等。TES內(nèi)置FPGA同步功能,因此用戶能夠準(zhǔn)確控制TDD時序,確保發(fā)送或接收幀能完全與跳幀同步。TES中還提供許多跳頻示例,供用戶進(jìn)一步分析研究。


17.jpg

圖11. 通過TES配置跳頻。


結(jié)論


跳頻是下一代SDR收發(fā)器ADRV9002的先進(jìn)系統(tǒng)特性之一。ADRV9002使用兩個PLL、多種跳頻模式,以及通過靈活加載和索引跳頻表的方法,為用戶提供出色的跳頻能力,以便應(yīng)對各種應(yīng)用并滿足更高系統(tǒng)要求。所有功能都可以通過ADRV9002 TES和軟件開發(fā)套件(SDK)進(jìn)行全面評估。


參考電路


1 John G. Proakis。數(shù)字通信,第3版。McGraw-Hill,1994年3月。


2  UG-1828:ADRV9001系統(tǒng)開發(fā)用戶指南。ADI公司,2021年10月。


3 Kao Chin-Han。 “在存在窄帶干擾的情況下,通過緩慢、平坦的Nakagami 衰減通道傳輸?shù)腏TIDS/Link 16型波形的性能分析”。美國海軍研究生院,2008年。



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


一種使用連續(xù)時間Σ-Δ型轉(zhuǎn)換器優(yōu)化信號鏈的新型方法

計(jì)算隔離式精密高速DAQ的采樣時鐘抖動的簡單步驟

輕負(fù)載時開關(guān)元件工作相關(guān)的注意事項(xiàng)

使用PWM輸出方式驅(qū)動有刷直流電機(jī):H橋電路PWM驅(qū)動

光芯片電磁仿真解決方案

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉