你的位置:首頁 > 電源管理 > 正文

交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果

發(fā)布時間:2021-02-02 來源:Jon Kraft 和 Alexander Ilustrisimo 責任編輯:wenwei

【導讀】本系列文章的第一部分介紹了一種從正電源產(chǎn)生低噪聲負電源軌的獨特方法,并說明了控制其運行的方程式推導過程。第二部分將借助ADI公司新產(chǎn)品 ADP5600深入探討這種交錯式反相電荷泵(IICP)的實際例子。我們將ADP5600的電壓紋波和電磁輻射干擾與標準反相電荷泵進行比較,以揭示交錯如何改善低噪聲性能。我們還將其應用于低噪聲相控陣波束成型電路,并使用第一部分中的公式來優(yōu)化該解決方案的性能。
 
世界首款商用交錯式反相電荷泵
 
如第一部分所述,集成電路中使用IICP來生成較小的負偏置軌。ADP5600獨特地將低噪聲IICP與其他低噪聲特性和高級故障保護功能結(jié)合在一起。
 
ADP5600是一款交錯式電荷泵逆變器,集成了低壓差(LDO)線性穩(wěn)壓器。與傳統(tǒng)的基于電感或電容的解決方案相比,其獨特的電荷泵級具有更低的輸出電壓紋波和反射輸入電流噪聲。交錯作為一種低噪聲概念很巧妙,但交錯通道并不能解決所有噪聲問題。為了實現(xiàn)真正的低噪聲,需要一種專門設計的IC來實現(xiàn)IICP的低噪聲優(yōu)勢,同時保持解決方案的小尺寸和高效率。
 
固定和可編程開關頻率
 
許多反相電荷泵的工作頻率為幾百kHz。這種相對較低的頻率限值要求相對較大的電容,并限制了頻率雜散可以放置的位置。ADP5600可以在100 kHz至1.1 MHz的開關頻率下工作,因而能在現(xiàn)代系統(tǒng)中高效使用。此外,該頻率始終是固定的,不隨輸出負載而變化。開關頻率變化(展頻調(diào)制)通常用于提高電荷泵效率,但在噪聲敏感的系統(tǒng)中可能會產(chǎn)生問題。
 
外部頻率同步
 
許多低噪聲系統(tǒng)需要將高幅度開關噪聲置于規(guī)定的頻帶中,以使所產(chǎn)生的噪聲對系統(tǒng)的影響最小??紤]到這一點,在噪聲敏感系統(tǒng)中,轉(zhuǎn)換器的工作頻率是同步的,但在電荷泵逆變器中,同步很少見。相比之下,ADP5600可以同步到高達2.2 MHz的外部時鐘。
 
低壓差穩(wěn)壓器
 
ADP5600的輸入電壓范圍很寬,其電荷泵輸出電壓可能過高,無法為低壓電路供電。因此,ADP5600內(nèi)置了一個LDO后置穩(wěn)壓器。它還有一個以正電壓為基準的電源正常信號引腳,以便在LDO輸出處于穩(wěn)壓狀態(tài)時輕松進行電源時序控制。
 
故障保護
 
最后,ADP5600具有一套全面的故障保護特性,適合于穩(wěn)健的應用。保護特性包括過載保護、短路飛跨電容保護、欠壓鎖定(UVLO)、精密使能和熱關斷。另一個新穎的特性是飛跨電容限流,它也能降低飛跨電容充電時的峰值電流尖峰。
 
ADP5600測試數(shù)據(jù)
 
第一部分從理論上證明了與非交錯解決方案相比,IICP架構(gòu)可顯著改善紋波。為簡潔起見,第一部分中說明的推導是理想化的,忽略了寄生效應、布局依賴性(IC和PCB)、時序失配(即不完美的50%振蕩器)和RDS失配。這些因素導致與計算和測量的電壓紋波有些偏差。一如既往,最好將ADP5600投入使用,觀測其性能,并使用推導的方程式指導電路優(yōu)化以獲得最佳性能。
 
此處使用標準ADP5600評估板,但插入了RFLY,并修改了CFLY和COUT的值。此外,我們使用ADP5600的SYNC特性來改變開關頻率。圖1所示框圖表明,各電荷泵以該SYNC頻率的一半進行開關。也就是說,fOSC = ½ fSYNC。
 
圖3和圖4分別顯示了在相同條件下運行時,交錯式和非交錯式反相電荷泵的輸出電壓紋波。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖1.ADP5600交錯式反相電荷泵簡化框圖。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖2.ADP5600交錯式反相電荷泵測試設置。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖3.ADP5600 IICP輸出電壓,VIN = 6 V,COUT = CFLY = 2.2 μF,fOSC = 250 kHz,ILOAD = 50 mA
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖4.標準反相電荷泵輸出電,VIN = 6 V,COUT = CFLY = 2.2 μF,fOSC = 250 kHz,ILOAD = 50 mA
 
在這些條件下,ADP5600的輸入和輸出電壓紋波幾乎比傳統(tǒng)反相電荷泵低14倍。我們還能確定此電壓紋波是否與本系列第一部分中推導出的方程式一致?;仡櫟谝徊糠郑琁ICP的輸出(或輸入)電壓紋波由下式給出:
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
 
使用式1,并將實際值代入ROUT和RON,便可比較計算出的和測量到的輸出電壓紋波。表1給出了多種測試配置下的結(jié)果,并指出了相對于非交錯式電荷泵方案的改善幅度。
 
表1.不同使用案例下的VOUT紋波;VIN = 12 V, ILOAD = 50 mA, RON = 2.35 Ω*
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
 
* 使用的是COUT和CFLY的實際電容值(電容在電壓下會降額),而不是標稱值。
 
表1顯示了交錯電壓紋波與式1的預測非常吻合。另外還顯示了其相對于標準的非交錯式反相電荷泵的改善幅度。此表中的某些設置還包括與CFLY串聯(lián)的附加外部電阻RFLY。結(jié)果表明,RFLY進一步降低了電壓紋波,但要以電荷泵輸出電阻為代價。式1和本系列文章第一部分中的分析也對此進行了預測。
 
除輸出電壓紋波外,IICP的電磁輻射騷擾與標準電荷泵相比也有所改善。為了衡量這一點,將一根25 mm天線放在評估板上(圖5),并測試了多種配置。圖6顯示了這樣一種配置與標準的非交錯式電荷泵逆變器的比較。IICP拓撲可將第一和第三開關諧波的噪聲降低12 dB至15 dB。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖5.采用ADP5600評估板的電磁輻射干擾測試設置
 
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖6.電磁輻射干擾, VIN = 12 V, ILOAD = 50 mA, CFLY = COUT = 2.2 μF, fSYNC = 500 kHz。綠色 = 標準,藍色 = IICP。
 
IICP應用示例
 
數(shù)據(jù)轉(zhuǎn)換器、RF放大器和RF開關需要低噪聲電源。這些系統(tǒng)中的電源設計面臨的主要挑戰(zhàn)是:
 
●     功耗和高溫運行
●     EMI抗擾度和低EMI貢獻
●     輸入電壓范圍大
●     解決方案尺寸和面積應最小化
 
為了說明IICP的完整設計和優(yōu)勢,我們考慮一個為RF放大器、RF開關和相控陣波束成型器供電的應用。該應用包含在ADTR1107數(shù)據(jù)手冊 中,圖7復制自其中。此示例需要幾個大功率正電壓軌——在這里是感性降壓轉(zhuǎn)換器的工作。另外還需要兩個負電壓軌:AVDD1和VSS_SW。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖7.ADAR1000加上四個ADTR1107電源軌
 
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖8.ADP5600和LT3093用于為AVDD1和VSS_SW供電
 
ADAR1000使用AVDD1為VGG_PA和LNA_BIAS生成低噪聲偏置軌。AVDD1為–5 V、50 mA,VSS_SW為ADTR1107中RF開關的–3.3 V、<100 μA電源軌。每個ADAR1000使用四個ADTR1107,因此–3.3 V電源軌最大汲取1 mA電流。通常,這些系統(tǒng)的電源軌為12 V。
 
ADP5600是從12 V電壓產(chǎn)生–5 V、50 mA和–3.3 V、1 mA電源軌的理想選擇,因為它實現(xiàn)了低輸入和輸出電壓紋波以及低電磁輻射干擾。此外,它能同步寬范圍的開關頻率,因而允許將開關噪聲放在對系統(tǒng)影響最小的位置。圖8顯示了最終設計。
 
LT3093 是一款超低噪聲LDO線性穩(wěn)壓器,支持高電壓,允許將ADP5600電荷泵輸出(CPOUT)直接連接到其輸入。其–5 V輸出由SET引腳上的電阻設置,當AVDD1電源軌符合要求時,可編程的電源良好引腳可以通知其他系統(tǒng)。ADP5600的LDO調(diào)節(jié)電流低得多的VSS_SW軌。盡管沒有LT3093那么低的噪聲或那么高的電源抑制比(PSRR),但它能夠為VSS_SW提供穩(wěn)定的電源軌。所有三個軌(電荷泵、AVDD1和VSS_SW)的輸出電壓紋波如圖9所示。
 
交錯式反相電荷泵——第二部分:實現(xiàn)和結(jié)果
圖9.電荷泵輸出電壓紋波,VIN = 12 V,COUT = 10 μF(標稱值),CFLY = 2.2 μF(標稱值),fSYNC = 1 MHz (fOSC = 500 kHz),ILOAD = 50 mA
 
結(jié)論
 
本系列文章由兩部分組成,提出了一種從正電源產(chǎn)生低噪聲負電源軌的新方法。第一部分介紹了交錯式反相電荷泵操作背后的概念。第二部分將這些想法付諸實踐,利用ADI公司的新產(chǎn)品ADP5600構(gòu)建并測試了一個完整解決方案,并使用第一部分中推導出的數(shù)學模型對該解決方案進行了優(yōu)化。另外還將其傳導發(fā)射和電磁輻射干擾與標準反相電荷泵進行了比較。在某些情況下,與標準電荷泵逆變器相比,其改善幅度達到18倍,這對于滿足現(xiàn)代精密和RF系統(tǒng)的低噪聲要求非常重要。
 
致謝
 
感謝Sherlyn Dela Cruz、Roger Peppiette和Steve Knoth的協(xié)助。
 
 
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
 
推薦閱讀:
 
了解通用異步接收器/發(fā)送器的硬件通信協(xié)議
零增益放大器
為了更精確,更高質(zhì)量,我們采用了數(shù)據(jù)采集系統(tǒng)“組合技”
針對低功耗應用的非易失性電阻式RAM技術
利用汽車前燈改善道路安全:發(fā)光二極管矩陣管理器
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉