詳解MOSFET與IGBT的本質(zhì)區(qū)別
發(fā)布時(shí)間:2018-07-13 責(zé)任編輯:wenwei
【導(dǎo)讀】本文將對(duì)一些參數(shù)進(jìn)行探討,如硬開(kāi)關(guān)和軟開(kāi)關(guān)ZVS (零電壓轉(zhuǎn)換) 拓?fù)渲械拈_(kāi)關(guān)損耗,并對(duì)電路和器件特性相關(guān)的三個(gè)主要功率開(kāi)關(guān)損耗—導(dǎo)通損耗、傳導(dǎo)損耗和關(guān)斷損耗進(jìn)行描述。此外,還通過(guò)舉例說(shuō)明二極管的恢復(fù)特性是決定MOSFET 或 IGBT導(dǎo)通開(kāi)關(guān)損耗的主要因素,討論二極管恢復(fù)性能對(duì)于硬開(kāi)關(guān)拓?fù)涞挠绊憽?/strong>
MOSFET和IGBT內(nèi)部結(jié)構(gòu)不同,決定了其應(yīng)用領(lǐng)域的不同
1、由于MOSFET的結(jié)構(gòu),通常它可以做到電流很大,可以到上KA,但是前提耐壓能力沒(méi)有IGBT強(qiáng)。
2、IGBT可以做很大功率,電流和電壓都可以,就是一點(diǎn)頻率不是太高,目前IGBT硬開(kāi)關(guān)速度可以到100KHZ,那已經(jīng)是不錯(cuò)了。不過(guò)相對(duì)于MOSFET的工作頻率還是九牛一毛,MOSFET可以工作到幾百KHZ,上MHZ,以至幾十MHZ,射頻領(lǐng)域的產(chǎn)品。
3、就其應(yīng)用,根據(jù)其特點(diǎn):MOSFET應(yīng)用于開(kāi)關(guān)電源、鎮(zhèn)流器、高頻感應(yīng)加熱、高頻逆變焊機(jī)、通信電源等等高頻電源領(lǐng)域;IGBT集中應(yīng)用于焊機(jī),逆變器,變頻器,電鍍電解電源,超音頻感應(yīng)加熱等領(lǐng)域。
開(kāi)關(guān)電源 (Switch Mode Power Supply;SMPS) 的性能在很大程度上依賴(lài)于功率半導(dǎo)體器件的選擇,即開(kāi)關(guān)管和整流器。
雖然沒(méi)有萬(wàn)全的方案來(lái)解決選擇IGBT還是MOSFET的問(wèn)題,但針對(duì)特定SMPS應(yīng)用中的IGBT 和 MOSFET進(jìn)行性能比較,確定關(guān)鍵參數(shù)的范圍還是能起到一定的參考作用。
本文將對(duì)一些參數(shù)進(jìn)行探討,如硬開(kāi)關(guān)和軟開(kāi)關(guān)ZVS (零電壓轉(zhuǎn)換) 拓?fù)渲械拈_(kāi)關(guān)損耗,并對(duì)電路和器件特性相關(guān)的三個(gè)主要功率開(kāi)關(guān)損耗—導(dǎo)通損耗、傳導(dǎo)損耗和關(guān)斷損耗進(jìn)行描述。此外,還通過(guò)舉例說(shuō)明二極管的恢復(fù)特性是決定MOSFET 或 IGBT導(dǎo)通開(kāi)關(guān)損耗的主要因素,討論二極管恢復(fù)性能對(duì)于硬開(kāi)關(guān)拓?fù)涞挠绊憽?/div>
導(dǎo)通損耗
除了IGBT的電壓下降時(shí)間較長(zhǎng)外,IGBT和功率MOSFET的導(dǎo)通特性十分類(lèi)似。由基本的IGBT等效電路(見(jiàn)圖1)可看出,完全調(diào)節(jié)PNP BJT集電極基極區(qū)的少數(shù)載流子所需的時(shí)間導(dǎo)致了導(dǎo)通電壓拖尾(voltage tail)出現(xiàn)。
這種延遲引起了類(lèi)飽和 (Quasi-saturation) 效應(yīng),使集電極/發(fā)射極電壓不能立即下降到其VCE(sat)值。這種效應(yīng)也導(dǎo)致了在ZVS情況下,在負(fù)載電流從組合封裝的反向并聯(lián)二極管轉(zhuǎn)換到 IGBT的集電極的瞬間,VCE電壓會(huì)上升。IGBT產(chǎn)品規(guī)格書(shū)中列出的Eon能耗是每一轉(zhuǎn)換周期Icollector與VCE乘積的時(shí)間積分,單位為焦耳,包含了與類(lèi)飽和相關(guān)的其他損耗。其又分為兩個(gè)Eon能量參數(shù),Eon1和Eon2。Eon1是沒(méi)有包括與硬開(kāi)關(guān)二極管恢復(fù)損耗相關(guān)能耗的功率損耗;Eon2則包括了與二極管恢復(fù)相關(guān)的硬開(kāi)關(guān)導(dǎo)通能耗,可通過(guò)恢復(fù)與IGBT組合封裝的二極管相同的二極管來(lái)測(cè)量,典型的Eon2測(cè)試電路如圖2所示。IGBT通過(guò)兩個(gè)脈沖進(jìn)行開(kāi)關(guān)轉(zhuǎn)換來(lái)測(cè)量Eon。第一個(gè)脈沖將增大電感電流以達(dá)致所需的測(cè)試電流,然后第二個(gè)脈沖會(huì)測(cè)量測(cè)試電流在二極管上恢復(fù)的Eon損耗。
在硬開(kāi)關(guān)導(dǎo)通的情況下,柵極驅(qū)動(dòng)電壓和阻抗以及整流二極管的恢復(fù)特性決定了Eon開(kāi)關(guān)損耗。對(duì)于像傳統(tǒng)CCM升壓PFC電路來(lái)說(shuō),升壓二極管恢復(fù)特性在Eon (導(dǎo)通) 能耗的控制中極為重要。除了選擇具有最小Trr和QRR的升壓二極管之外,確保該二極管擁有軟恢復(fù)特性也非常重要。軟化度 (Softness),即tb/ta比率,對(duì)開(kāi)關(guān)器件產(chǎn)生的電氣噪聲和電壓尖脈沖 (voltage spike) 有相當(dāng)?shù)挠绊?。某些高速二極管在時(shí)間tb內(nèi),從IRM(REC)開(kāi)始的電流下降速率(di/dt)很高,故會(huì)在電路寄生電感中產(chǎn)生高電壓尖脈沖。這些電壓尖脈沖會(huì)引起電磁干擾(EMI),并可能在二極管上導(dǎo)致過(guò)高的反向電壓。
在硬開(kāi)關(guān)電路中,如全橋和半橋拓?fù)渲?,與IGBT組合封裝的是快恢復(fù)管或MOSFET體二極管,當(dāng)對(duì)應(yīng)的開(kāi)關(guān)管導(dǎo)通時(shí)二極管有電流經(jīng)過(guò),因而二極管的恢復(fù)特性決定了Eon損耗。所以,選擇具有快速體二極管恢復(fù)特性的MOSFET十分重要。不幸的是,MOSFET的寄生二極管或體二極管的恢復(fù)特性比業(yè)界目前使用的分立二極管要緩慢。因此,對(duì)于硬開(kāi)關(guān)MOSFET應(yīng)用而言,體二極管常常是決定SMPS工作頻率的限制因素。
一般來(lái)說(shuō),IGBT組合封裝二極管的選擇要與其應(yīng)用匹配,具有較低正向傳導(dǎo)損耗的較慢型超快二極管與較慢的低VCE(sat)電機(jī)驅(qū)動(dòng)IGBT組合封裝在一起。相反地,軟恢復(fù)超快二極管,可與高頻SMPS2開(kāi)關(guān)模式IGBT組合封裝在一起。
除了選擇正確的二極管外,設(shè)計(jì)人員還能夠通過(guò)調(diào)節(jié)柵極驅(qū)動(dòng)導(dǎo)通源阻抗來(lái)控制Eon損耗。降低驅(qū)動(dòng)源阻抗將提高IGBT或MOSFET的導(dǎo)通di/dt及減小Eon損耗。Eon損耗和EMI需要折中,因?yàn)檩^高的di/dt 會(huì)導(dǎo)致電壓尖脈沖、輻射和傳導(dǎo)EMI增加。為選擇正確的柵極驅(qū)動(dòng)阻抗以滿(mǎn)足導(dǎo)通di/dt 的需求,可能需要進(jìn)行電路內(nèi)部測(cè)試與驗(yàn)證,然后根據(jù)MOSFET轉(zhuǎn)換曲線(xiàn)可以確定大概的值 (見(jiàn)圖3)。
假定在導(dǎo)通時(shí),F(xiàn)ET電流上升到10A,根據(jù)圖3中25℃的那條曲線(xiàn),為了達(dá)到10A的值,柵極電壓必須從5.2V轉(zhuǎn)換到6.7V,平均GFS為10A/(6.7V-5.2V)=6.7mΩ。
公式1 獲得所需導(dǎo)通di/dt的柵極驅(qū)動(dòng)阻抗
把平均GFS值運(yùn)用到公式1中,得到柵極驅(qū)動(dòng)電壓Vdrive=10V,所需的 di/dt=600A/μs,F(xiàn)CP11N60典型值VGS(avg)=6V,Ciss=1200pF;于是可以計(jì)算出導(dǎo)通柵極驅(qū)動(dòng)阻抗為37Ω。由于在圖3的曲線(xiàn)中瞬態(tài)GFS值是一條斜線(xiàn),會(huì)在Eon期間出現(xiàn)變化,意味著di/dt也會(huì)變化。呈指數(shù)衰減的柵極驅(qū)動(dòng)電流Vdrive和下降的Ciss作為VGS的函數(shù)也進(jìn)入了該公式,表現(xiàn)具有令人驚訝的線(xiàn)性電流上升的總體效應(yīng)。
同樣的,IGBT也可以進(jìn)行類(lèi)似的柵極驅(qū)動(dòng)導(dǎo)通阻抗計(jì)算,VGE(avg) 和 GFS可以通過(guò)IGBT的轉(zhuǎn)換特性曲線(xiàn)來(lái)確定,并應(yīng)用VGE(avg)下的CIES值代替Ciss。計(jì)算所得的IGBT導(dǎo)通柵極驅(qū)動(dòng)阻抗為100Ω,該值比前面的37Ω高,表明IGBT GFS較高,而CIES較低。這里的關(guān)鍵之處在于,為了從MOSFET轉(zhuǎn)換到IGBT,必須對(duì)柵極驅(qū)動(dòng)電路進(jìn)行調(diào)節(jié)。
傳導(dǎo)損耗需謹(jǐn)慎
在比較額定值為600V的器件時(shí),IGBT的傳導(dǎo)損耗一般比相同芯片大小的600 V MOSFET少。這種比較應(yīng)該是在集電極和漏極電流密度可明顯感測(cè),并在指明最差情況下的工作結(jié)溫下進(jìn)行的。例如,F(xiàn)GP20N6S2 SMPS2 IGBT 和 FCP11N60 SuperFET均具有1℃/W的RθJC值。圖4顯示了在125℃的結(jié)溫下傳導(dǎo)損耗與直流電流的關(guān)系,圖中曲線(xiàn)表明在直流電流大于2.92A后,MOSFET的傳導(dǎo)損耗更大。
不過(guò),圖4中的直流傳導(dǎo)損耗比較不適用于大部分應(yīng)用。同時(shí),圖5中顯示了傳導(dǎo)損耗在CCM (連續(xù)電流模式)、升壓PFC電路,125℃的結(jié)溫以及85V的交流輸入電壓Vac和400 Vdc直流輸出電壓的工作模式下的比較曲線(xiàn)。圖中,MOSFET-IGBT的曲線(xiàn)相交點(diǎn)為2.65A RMS。對(duì)PFC電路而言,當(dāng)交流輸入電流大于2.65A RMS時(shí),MOSFET具有較大的傳導(dǎo)損耗。2.65A PFC交流輸入電流等于MOSFET中由公式2計(jì)算所得的2.29A RMS。MOSFET傳導(dǎo)損耗、I2R,利用公式2定義的電流和MOSFET 125℃的RDS(on)可以計(jì)算得出。把RDS(on)隨漏極電流變化的因素考慮在內(nèi),該傳導(dǎo)損耗還可以進(jìn)一步精確化,這種關(guān)系如圖6所示。
一篇名為“如何將功率MOSFET的RDS(on)對(duì)漏極電流瞬態(tài)值的依賴(lài)性包含到高頻三相PWM逆變器的傳導(dǎo)損耗計(jì)算中”的IEEE文章描述了如何確定漏極電流對(duì)傳導(dǎo)損耗的影響。作為ID之函數(shù),RDS(on)變化對(duì)大多數(shù)SMPS拓?fù)涞挠绊懞苄?。例如,在PFC電路中,當(dāng)FCP11N60 MOSFET的峰值電流ID為11A——兩倍于5.5A (規(guī)格書(shū)中RDS(on) 的測(cè)試條件) 時(shí),RDS(on)的有效值和傳導(dǎo)損耗會(huì)增加5%。
在MOSFET傳導(dǎo)極小占空比的高脈沖電流拓?fù)浣Y(jié)構(gòu)中,應(yīng)該考慮圖6所示的特性。如果FCP11N60 MOSFET工作在一個(gè)電路中,其漏極電流為占空比7.5%的20A脈沖 (即5.5A RMS),則有效的RDS(on)將比5.5A(規(guī)格書(shū)中的測(cè)試電流)時(shí)的0.32歐姆大25%。
公式2 CCM PFC電路中的RMS電流
式2中,Iacrms是PFC電路RMS輸入電流;Vac是 PFC 電路RMS輸入電壓;Vout是直流輸出電壓。
在實(shí)際應(yīng)用中,計(jì)算IGBT在類(lèi)似PFC電路中的傳導(dǎo)損耗將更加復(fù)雜,因?yàn)槊總€(gè)開(kāi)關(guān)周期都在不同的IC上進(jìn)行。IGBT的VCE(sat)不能由一個(gè)阻抗表示,比較簡(jiǎn)單直接的方法是將其表示為阻抗RFCE串聯(lián)一個(gè)固定VFCE電壓,VCE(ICE)=ICE×RFCE+VFCE。于是,傳導(dǎo)損耗便可以計(jì)算為平均集電極電流與VFCE的乘積,加上RMS集電極電流的平方,再乘以阻抗RFCE。
圖5中的示例僅考慮了CCM PFC電路的傳導(dǎo)損耗,即假定設(shè)計(jì)目標(biāo)在維持最差情況下的傳導(dǎo)損耗小于15W。以FCP11N60 MOSFET為例,該電路被限制在5.8A,而FGP20N6S2 IGBT可以在9.8A的交流輸入電流下工作。它可以傳導(dǎo)超過(guò)MOSFET 70% 的功率。
雖然IGBT的傳導(dǎo)損耗較小,但大多數(shù)600V IGBT都是PT (Punch Through,穿透) 型器件。PT器件具有NTC (負(fù)溫度系數(shù))特性,不能并聯(lián)分流。或許,這些器件可以通過(guò)匹配器件VCE(sat)、VGE(TH) (柵射閾值電壓) 及機(jī)械封裝以有限的成效進(jìn)行并聯(lián),以使得IGBT芯片們的溫度可以保持一致的變化。相反地,MOSFET具有PTC (正溫度系數(shù)),可以提供良好的電流分流。
關(guān)斷損耗 —問(wèn)題尚未結(jié)束
在硬開(kāi)關(guān)、鉗位感性電路中,MOSFET的關(guān)斷損耗比IGBT低得多,原因在于IGBT 的拖尾電流,這與清除圖1中PNP BJT的少數(shù)載流子有關(guān)。圖7顯示了集電極電流ICE和結(jié)溫Tj的函數(shù)Eoff,其曲線(xiàn)在大多數(shù)IGBT數(shù)據(jù)表中都有提供。 這些曲線(xiàn)基于鉗位感性電路且測(cè)試電壓相同,并包含拖尾電流能量損耗。
圖2顯示了用于測(cè)量IGBT Eoff的典型測(cè)試電路, 它的測(cè)試電壓,即圖2中的VDD,因不同制造商及個(gè)別器件的BVCES而異。在比較器件時(shí)應(yīng)考慮這測(cè)試條件中的VDD,因?yàn)樵谳^低的VDD鉗位電壓下進(jìn)行測(cè)試和工作將導(dǎo)致Eoff能耗降低。
降低柵極驅(qū)動(dòng)關(guān)斷阻抗對(duì)減小IGBT Eoff損耗影響極微。如圖1所示,當(dāng)?shù)刃У亩鄶?shù)載流子MOSFET關(guān)斷時(shí),在IGBT少數(shù)載流子BJT中仍存在存儲(chǔ)時(shí)間延遲td(off)I。不過(guò),降低Eoff驅(qū)動(dòng)阻抗將會(huì)減少米勒電容 (Miller capacitance) CRES和關(guān)斷VCE的 dv/dt造成的電流注到柵極驅(qū)動(dòng)回路中的風(fēng)險(xiǎn),避免使器件重新偏置為傳導(dǎo)狀態(tài),從而導(dǎo)致多個(gè)產(chǎn)生Eoff的開(kāi)關(guān)動(dòng)作。
ZVS和ZCS拓?fù)湓诮档蚆OSFET 和 IGBT的關(guān)斷損耗方面很有優(yōu)勢(shì)。不過(guò)ZVS的工作優(yōu)點(diǎn)在IGBT中沒(méi)有那么大,因?yàn)楫?dāng)集電極電壓上升到允許多余存儲(chǔ)電荷進(jìn)行耗散的電勢(shì)值時(shí),會(huì)引發(fā)拖尾沖擊電流Eoff。ZCS拓?fù)淇梢蕴嵘畲蟮腎GBT Eoff性能。正確的柵極驅(qū)動(dòng)順序可使IGBT柵極信號(hào)在第二個(gè)集電極電流過(guò)零點(diǎn)以前不被清除,從而顯著降低IGBT ZCS Eoff 。
MOSFET的 Eoff能耗是其米勒電容Crss、柵極驅(qū)動(dòng)速度、柵極驅(qū)動(dòng)關(guān)斷源阻抗及源極功率電路路徑中寄生電感的函數(shù)。該電路寄生電感Lx (如圖8所示) 產(chǎn)生一個(gè)電勢(shì),通過(guò)限制電流速度下降而增加關(guān)斷損耗。在關(guān)斷時(shí),電流下降速度di/dt由Lx和VGS(th)決定。如果Lx=5nH,VGS(th)=4V,則最大電流下降速度為VGS(th)/Lx=800A/μs。
總結(jié):
在選用功率開(kāi)關(guān)器件時(shí),并沒(méi)有萬(wàn)全的解決方案,電路拓?fù)?、工作頻率、環(huán)境溫度和物理尺寸,所有這些約束都會(huì)在做出最佳選擇時(shí)起著作用。
在具有最小Eon損耗的ZVS 和 ZCS應(yīng)用中,MOSFET由于具有較快的開(kāi)關(guān)速度和較少的關(guān)斷損耗,因此能夠在較高頻率下工作。
對(duì)硬開(kāi)關(guān)應(yīng)用而言,MOSFET寄生二極管的恢復(fù)特性可能是個(gè)缺點(diǎn)。相反,由于IGBT組合封裝內(nèi)的二極管與特定應(yīng)用匹配,極佳的軟恢復(fù)二極管可與更高速的SMPS器件相配合。
后語(yǔ):MOSFE和IGBT是沒(méi)有本質(zhì)區(qū)別的,人們常問(wèn)的“是MOSFET好還是IGBT好”這個(gè)問(wèn)題本身就是錯(cuò)誤的。至于我們?yōu)楹斡袝r(shí)用MOSFET,有時(shí)又不用MOSFET而采用IGBT,不能簡(jiǎn)單的用好和壞來(lái)區(qū)分,來(lái)判定,需要用辯證的方法來(lái)考慮這個(gè)問(wèn)題。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿(mǎn)足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線(xiàn)檢測(cè) 芯片查詢(xún) 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線(xiàn)通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢(xún) 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉