你的位置:首頁 > 電源管理 > 正文

分享:智能太陽能充電電路設(shè)計技巧

發(fā)布時間:2014-12-09 責(zé)任編輯:xueqi

【導(dǎo)讀】此智能型太陽能充電電路,具有工作性能穩(wěn)定,運行安全可靠、低損耗,高效率、結(jié)構(gòu)簡單,輸出電壓精度高等優(yōu)點。目前本文所設(shè)計開發(fā)的太陽能充電及自動跟蹤電路已經(jīng)成功應(yīng)用于江蘇油田無線示功儀及其無線通訊網(wǎng)絡(luò)中。
 
針對油田無線示功儀及其無線網(wǎng)絡(luò)節(jié)點的供電問題,采用開關(guān)電源技術(shù)實現(xiàn)了太陽能組件電壓變化或負(fù)載波動時自動調(diào)節(jié)占空比的供電網(wǎng)絡(luò),運用自動控制技術(shù)設(shè)計了過電壓保護(hù)電路、過放電保護(hù)電路與應(yīng)急充電電路等, 采用充電管理技術(shù)實現(xiàn)了鋰電池充電及電壓調(diào)節(jié)電路,根據(jù)光敏傳感器輸出差值比較電壓設(shè)計了太陽自動跟蹤控制器。該太陽能充電電路思路新穎,在應(yīng)用上是一種突破,工作效率達(dá)到92% ,輸出電壓精度為98% ,系統(tǒng)運行一年來,工作性能安全、穩(wěn)定。應(yīng)用證明具有較高的實用和推廣價值。
 
隨著無線技術(shù)的發(fā)展,無線網(wǎng)絡(luò)技術(shù)越來越多投入到實際應(yīng)用中, 無線傳感器網(wǎng)絡(luò)一般分布范圍較廣,架設(shè)供電線路,投資大,維護(hù)成本高。如采取干電池方式供電,則每個節(jié)點的電源供電能力有限,對每個節(jié)點更換電池不僅費時、費力,增加成本,而且影響工作效率。能否穩(wěn)定持續(xù)的供電,成為制約油田無線示功儀及其無線網(wǎng)絡(luò)發(fā)展的一個重要因素,太陽能技術(shù)的發(fā)展使供電方式產(chǎn)生了飛躍式的發(fā)展,已經(jīng)成為油田無線示功儀及其中繼網(wǎng)絡(luò)節(jié)點供電方式的發(fā)展方向。本文擬對油田監(jiān)測示功儀及中繼網(wǎng)絡(luò)節(jié)點設(shè)計一種智能化、免維護(hù)型的太陽能充電電路,為無線網(wǎng)絡(luò)節(jié)點供電。

該設(shè)計電路具有以下特點: 
 
①基于開關(guān)電源技術(shù)設(shè)計的充電網(wǎng)絡(luò)具有自動調(diào)節(jié)占空比的功能, 具有很寬的輸入電壓范圍。
②采用線性電源管理芯片,用先預(yù)充2 恒流2 恒壓的充電方式完成整個充電過程。
③采用低噪聲、高速度的CMOS 型電壓調(diào)節(jié)器,具有高精度的恒壓、恒流輸出。
④充電過壓保護(hù)、鋰電池過放電保護(hù)功能,使鋰電池充、放電安全可靠。
⑤自動跟蹤太陽的功能,太陽能采集板始終保持對準(zhǔn)太陽,充分利用太陽能。
 
1 系統(tǒng)設(shè)計
 
現(xiàn)有的光伏電池,單體的輸出電壓都很低(在1V 以下) ,本設(shè)計中,將多個光伏電池相串聯(lián),組成太陽能組件。通過可以自動調(diào)節(jié)占空比的供電網(wǎng)絡(luò)保證在光照強(qiáng)度變化和負(fù)載變化時,輸出電壓基本穩(wěn)定,為充電管理芯片提供穩(wěn)定的電壓輸入。通過對供電網(wǎng)絡(luò)的副邊電壓監(jiān)測,保護(hù)充電管理芯片不因電壓過高而損壞。通過對電池兩端的電壓監(jiān)測,保證鋰電池不會因過放電而損壞。由于無線示功儀及其中繼網(wǎng)絡(luò)節(jié)點的供電要求是313V,采用低噪聲、高速度的CMOS型電壓調(diào)節(jié)器。在自動跟蹤控制器作用下,始終保持全天候跟蹤太陽。為了防止因連續(xù)陰雨天而導(dǎo)致的太陽能供電不足,設(shè)計應(yīng)急充電電路,充電期間,無線示功儀及其節(jié)點正常運行。具體系統(tǒng)設(shè)計模塊如圖1 所示。
 
 
圖1:系統(tǒng)設(shè)計示意圖
 
[page]
2 硬件電路設(shè)計
 
2.1 太陽能組件及充電電路設(shè)計
 
本文設(shè)計中采用16 個光伏電池串聯(lián),組成電壓約為1218V 的太陽能組件,通過采集較高多的光能,保證日照能夠使鋰電池完全充滿電。供電網(wǎng)絡(luò)設(shè)計電路采用正激式拓?fù)浣Y(jié)構(gòu)[ 1 ] 。具體電路如圖2 所示。
 
 
圖2:智能型太陽能充電電路設(shè)計主電路
 
太陽能組件產(chǎn)生的電能,一路經(jīng)過開關(guān)變壓器T1 的122 繞組加至開關(guān)管Q1的集電極( c) ,另一路經(jīng)過R1 為Q1 提供基極電壓。當(dāng)基極( b)的電壓為高電平時, Q1 開始導(dǎo)通,變壓器T1 的122 繞組中產(chǎn)生1 正2 負(fù)的電動勢,經(jīng)T1 耦合,在T1 的324 繞組中產(chǎn)生3 正4 負(fù)的感應(yīng)電動勢,此電動勢經(jīng)R5 ,C2 疊加到Q1 的基極( b) ,使Q1 迅速飽和導(dǎo)通。由于變壓器T1 的122 間的電流不能突變,在此過程中會產(chǎn)生1 負(fù)2 正的電動勢。變壓器T1 的324 繞組中感應(yīng)出3 負(fù)4 正的電動勢,通過R5 , C2 ,使Q1 迅速進(jìn)入截止?fàn)顟B(tài)。經(jīng)R1 對C2 的不斷充電, Q1 又開始導(dǎo)通,進(jìn)入下一輪的開關(guān)振蕩狀態(tài)。在導(dǎo)通期間, T1 變壓器的副邊繞組526,經(jīng)整流二極管D4 向外輸送能量。
 
穩(wěn)壓電路由穩(wěn)壓管D0、三極管Q2 等元件組成。當(dāng)負(fù)載減輕或太陽能組件輸出電壓升高時, A 點電壓上升。當(dāng)該電壓大于511V 時, D0 擊穿, Q2 因b2e 結(jié)正向偏置而迅速導(dǎo)通,使Q1 提前截止,從而使輸出電壓趨于下降;反之,則控制過程相反,從而使變壓器T1 副邊輸出電壓基本穩(wěn)定。當(dāng)負(fù)載過重時,Q1的c2e 電流增大, R4 上的壓降也隨之增大。當(dāng)該電壓大于017V 時, Q2 導(dǎo)通, Q1 截止,達(dá)到過流保護(hù)的目的。為避免截止期間變壓器T1 的122 繞組感應(yīng)出的尖峰脈沖擊穿開關(guān)管Q1 ,并聯(lián)了尖峰脈沖吸收電路。
 
2.2 過電壓保護(hù)控制
 
過電壓保護(hù)控制,具體電路如圖3 所示:整流二極管D4 接過電壓保護(hù)繼電器JDQ1 輸出。充電控制管理芯片MCP73831 最大輸入電壓為6V. 雖然供電網(wǎng)絡(luò)基本輸出電壓為5V,但當(dāng)光照強(qiáng)度發(fā)生劇烈變化或負(fù)載變化較大時,輸出電壓仍然會有一定波動,為保護(hù)MCP73831 不因短時的電壓波動而損壞,設(shè)計了過電壓保護(hù)控制器。當(dāng)W1 的電壓超過6V, JDQ 1 會斷開輸出電路,MCP73831 因斷電而得到保護(hù)。
 
具體分析如下:此部分電路設(shè)計主要采用了LM 2903 電壓比較器和外圍電路擴(kuò)展而成。LM 2903 包含兩路比較器,1, 2, 3 腳為一路, 1腳為OU TPU TA, 2, 3 腳為IN PU TA. 5, 6, 7 腳為另一路, 7 腳為OU TPU TB, 5, 6 腳為IN PU TB. 其中過電壓保護(hù)控制器用5, 6, 7 腳的比較器。電阻R11 ,R13 分壓后接至比較器的5 腳。當(dāng)電壓大于6V 即分壓值大于214V.比較器的7 腳輸出電平由低轉(zhuǎn)為高。Q3 飽和導(dǎo)通,則Q5 截止,安全工作指示燈熄滅,接點J1 為高電平,此時JDQ 1 開始工作,供電電路與后續(xù)電路斷開,同時過電壓紅色警示燈亮起。
 
 
圖3:過電壓與過放電保護(hù)控制電路
[page]
 
2.3 過放電保護(hù)控制
 
當(dāng)鋰電池電壓低于315V 時,即電池電量釋放92%以上時,認(rèn)為不能繼續(xù)放電,否則鋰電池內(nèi)部介質(zhì)會發(fā)生變化,致使充電特性變壞,容量降低等。為此設(shè)計過放電保護(hù)控制電路,此電路的具體設(shè)計如圖3,分析如下:采用了LM 2903的1,2,3 腳組成的一路比較器,與外圍器件構(gòu)成過放電壓比較器,R12 , R14分壓后接至LM 2093 的3 腳。當(dāng)電壓值小于315V 時,分壓值小于214V,LM 2903的1 腳由高電平轉(zhuǎn)變?yōu)榈碗娖剑?Q4 由導(dǎo)通轉(zhuǎn)變?yōu)榻刂範(fàn)顟B(tài), Q6 飽和導(dǎo)通,JDQ2 工作,同時過放紅色指示燈亮。
 
2.4 自動跟蹤控制器
 
控制器的輸入端,光敏傳感器分別由兩只光敏電阻串聯(lián)交叉組合而成。每一組兩只光敏電阻中的一只為比較器的上偏置電阻,另一只為下偏置電阻。一只檢測太陽光照,另一只則檢測環(huán)境光照,送至比較器輸入端的比較電平始終為兩者光照之差。具體電路如圖4 所示:光敏電阻RT1 , RT2 與電位器R27 和光敏電阻RT3 , RT4 與電位器R28 分別構(gòu)成光敏傳感電路。將RT1 和RT3 安裝在垂直遮陽板的一側(cè), RT4 和RT2 安裝在另一側(cè)。當(dāng)RT1 , RT2 , RT3 和RT4 同時受環(huán)境自然光線作用時,R27 和R28 的中心點電壓不變。當(dāng)只有RT1 ,RT3 受太陽光照射, RT1 的內(nèi)阻減小, LM 2903 的5 腳電位升高, 7 腳輸出高電平, 三極管Q7 導(dǎo)通,JDQ 4 工作,其觸點3, 5 閉合。同時RT3 內(nèi)阻減小, LM 2903 的3 腳電位下降, JDQ 5 不工作,電機(jī)M 正轉(zhuǎn);當(dāng)只有RT2 , RT4受太陽光照射,同理,電機(jī)M 反轉(zhuǎn)。當(dāng)轉(zhuǎn)到垂直遮陽板兩側(cè)的光照度相同時,JDQ 4, JDQ 5 都導(dǎo)通,電機(jī)M 才停轉(zhuǎn)。在太陽不停地偏移過程中,垂直遮陽板兩側(cè)光照度的強(qiáng)弱不斷地交替變化,電機(jī)不停的運動,使太陽能接收裝置始終面朝太陽。
 
 
圖4:自動跟蹤控制器
 
2.5 充電管理電路設(shè)計
 
鋰電池的充電過程一般分為3 個階段: ①涓流充電階段。②恒流充電階段。一般可以充電到電池容量的85%左右。③恒壓充電階段。鋰電池過充,輕則減少電池壽命,性能變壞,重則產(chǎn)生漏液等。在本文的設(shè)計中,采用了線性充電管理芯片MCP73831,如圖1 所示。該芯片具有輸出電壓準(zhǔn)確,任意設(shè)定充電電流,自動轉(zhuǎn)換充電模式,消耗電流極?。?5uA ) ,過充監(jiān)測保護(hù)等功能和特點。MCP73831 各管腳的功能:
 
VDD 為輸入電壓端; VSS 為參考零電壓端; VBA T 為充電控制輸出端; STA T 為充電狀態(tài)輸出端。PROG 為電流設(shè)定與充電控制使能端。鋰電池充電時,充電管理芯片MCP73831 的PROG 接口須外接電阻到VSS,具體計算公式: IREG =1000 (V ) /RPROG 其中RPROG 的單位為kΩ, IREG 的單位為mA. 在本文設(shè)計
中RPROG = 2kΩ。
 
則IREG = 500mA. STA T 的各接口狀態(tài)及電路設(shè)計中指示燈的邏輯關(guān)系如表1 所示。充電管理芯片MCP73831 通過檢測鋰電池的BA T 引腳來判斷電池的各個狀態(tài),從而對電池進(jìn)行充電管理。不發(fā)生過電壓保護(hù)時,供電網(wǎng)絡(luò)一方面對MCP73831 提供5V 電壓。一方面通過D 5 傳輸?shù)絁DQ2 對后續(xù)電路供電。應(yīng)急充電時,外接5V 電源,一路通過D5 到繼電器JDQ 2. 另一路到達(dá)MCP73831對鋰電池充電。D5 陰極端輸出電壓5(V ) - 017 (V ) = 413 (V ) ,由于鋰電池的電壓在充滿或非充滿電狀態(tài)的時候,都低于D6 陰極輸出端電壓(D5 , D6 共陰極) , 所以在應(yīng)急充電的過程中, RT9193 正常工作。在CMOS ( comp lem entary m etal2oxidesem iconducto r)型電壓調(diào)節(jié)器RT9193的B P 端和地之間連接一個22nF 的電容,可以極大的減少調(diào)節(jié)器的輸出噪聲。在常溫狀態(tài)下,充電完成時電壓412V 的鋰電池, 消耗了90%的電量時候, 電壓仍然會保持315V. 本文設(shè)計中選用電壓調(diào)節(jié)器RT9193,即使314V 的時候,輸出電壓仍然可以穩(wěn)定在313V。
 
 
表1:MCP73831 電路設(shè)計中指示燈的邏輯關(guān)系
[page]
 
3 試驗數(shù)據(jù)及結(jié)果分析
 
在調(diào)試中, 采用模塊化測試的方法, 最后進(jìn)行聯(lián)合調(diào)試。對供電網(wǎng)絡(luò)進(jìn)行測試,選用可調(diào)電源,調(diào)節(jié)輸入電壓,輸出電壓及試驗數(shù)據(jù)如表2 所示。通過應(yīng)急充電接口接入標(biāo)準(zhǔn)5V 電壓,斷開RT9193,對進(jìn)行測試時,沒有連接二極管D5 , D6 ,發(fā)現(xiàn)MCP73831 的指示燈指示不正確。分析發(fā)現(xiàn), 不連接二極管D5 , D6 , 相當(dāng)于RT9193 直接連接在BA T 引腳輸出,在MCP73831 上電的瞬間, 要檢測BA T 的狀態(tài), RT9193 的輸入引腳及支路連接到鋰電池的正極,直接影響到了MCP73831 對BA T 引腳的檢測狀態(tài),致使充電進(jìn)入涓流充電階段。增加D5 , D6 后,再進(jìn)行試驗,指示燈符合邏輯要求。測試輸出電流為最大為485mA,充電電壓達(dá)到412V 時,綠色指示燈熄滅,紅色指示燈亮起,完成對鋰電池的充電。W1 接入0~10V 可調(diào)節(jié)電壓源(初始值設(shè)為5V ) ,M1 接入0~5V可調(diào)節(jié)電壓源(初始值設(shè)為4V ) ,調(diào)節(jié)滑動變阻器R13 , R14. 使W 1 輸入電壓6V 時LM 2903 的7 腳由低電平轉(zhuǎn)為高電平。測量此時滑動電阻器R13 =3115kΩ, 固定此電阻值。M1 輸入電壓315V 時LM 2903 的1 腳由高電平轉(zhuǎn)為低電平,測量此時滑動變阻器R14 = 1kΩ,固定此電阻值。此時發(fā)現(xiàn)LM 2903的1 腳輸出處于臨界值,不停的在高低電平之間變換,繼電器JDQ2 不停的通斷,減少了JDQ2 的使用壽命,極易損壞無線示功儀及無線網(wǎng)絡(luò)設(shè)備, 對無線設(shè)備的壽命影響也極大。分析發(fā)現(xiàn):在過放電保護(hù)過程中,檢測值和比較值如果達(dá)到基本一致的狀態(tài),則會產(chǎn)生臨界保護(hù)。為此在電阻R20 與R′20 之間接電解電容C13 ,通過對電容的充放電,延遲了Q4 的關(guān)斷時間,增加了開啟和關(guān)斷的時間間隔,電容的大小決定了時間間隔的長短。該時間即為過放保護(hù)控制器的保護(hù)延時時間。設(shè)計選用212μF 電容,測試發(fā)現(xiàn)延時15s 左右。
 
自動跟蹤控器調(diào)試,調(diào)試時W1 接5V 電源,用一只100W 燈泡照射RT1 與RT3 并移動燈光,可以發(fā)現(xiàn)太陽能采集板跟著燈光運動。但穩(wěn)定狀態(tài)時電機(jī)不停震動, 此時通過在電阻R31 與電阻R32 之間增加一個417uF 電容,延遲電機(jī)啟動、停止時間。經(jīng)測試發(fā)現(xiàn)延時時間40s 左右,相對太陽照射時間來說,此時間可以忽略不計,不影響跟蹤功能。同理在電阻R34 與電阻R35 之間增加一個417μF 電容。經(jīng)測試發(fā)現(xiàn):可以完全消除電機(jī)震動現(xiàn)象且跟蹤效果良好。各部分獨立調(diào)試完成后對供電網(wǎng)絡(luò)和充電管理芯片MCP73831 進(jìn)行聯(lián)調(diào),然后增加RT9193 進(jìn)行調(diào)試, 最后實現(xiàn)整個系統(tǒng)的調(diào)試。經(jīng)測試證明, 實現(xiàn)了設(shè)計目標(biāo)和功能要求。
 
4 結(jié)語
 
此智能型太陽能充電電路,具有工作性能穩(wěn)定,運行安全可靠、低損耗,高效率、結(jié)構(gòu)簡單,輸出電壓精度高等優(yōu)點。自動調(diào)節(jié)占空比的供電網(wǎng)絡(luò)與電源管理芯片的相結(jié)合,過壓與過放電保護(hù),自動跟蹤太陽等功能是比較有創(chuàng)造性的設(shè)計方式,特別是將這些設(shè)計應(yīng)用到油田無線示功儀和無線網(wǎng)絡(luò)節(jié)點中,是一種嶄新的嘗試,也是應(yīng)用上的突破。目前本文所設(shè)計開發(fā)的太陽能充電及自動跟蹤電路已經(jīng)成功應(yīng)用于江蘇油田無線示功儀及其無線通訊網(wǎng)絡(luò)中。實踐證明該系統(tǒng)充電速度快,效率較高,可以實時跟蹤太陽, 工作穩(wěn)定,維護(hù)量少,具有較高的實用及推廣價值。
要采購變壓器么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉