【導讀】對于像彩色LCD顯示屏、手機背光屏等便攜式產(chǎn)品中的電子系統(tǒng)而言,使用電池供電的直流電平轉(zhuǎn)換器是非常理想的電源轉(zhuǎn)換器件。本文設計了一種電流控制型DC-DC開關變換器芯片,該芯片擁有低功耗、電壓電流紋波系數(shù)小、成本低等優(yōu)點,可用于彩色LCD背光照明。
當前消費類電子產(chǎn)品的巨大市場和發(fā)展?jié)摿Γ共捎秒姵毓╇姷谋銛y式產(chǎn)品的小功率、低功耗、高效率、小體積、輕重量的直流電平轉(zhuǎn)換器(DC/DCConverter)發(fā)展迅猛。對于許多應用于便攜式產(chǎn)品中的電子系統(tǒng),如彩色LCD顯示屏、手機背光屏等,DC/DC是其非常理想的電源轉(zhuǎn)換器件。
本文基于2μm15V雙極型工藝設計了一種電流控制型PFMBoostDC-DC開關變換器芯片,通過采用低反饋電阻技術(shù)減小外部反饋電阻的損耗,并采用負載電流反饋技術(shù)調(diào)節(jié)系統(tǒng)占空比以減小系統(tǒng)穩(wěn)態(tài)時輸出電壓電流紋波系數(shù)。芯片采用Fixed-On-Time控制方式,當整個系統(tǒng)穩(wěn)態(tài)時處于BoostPFM的不連續(xù)導通模式(DCM),而這種工作模式具有天然的穩(wěn)定性。
電路系統(tǒng)結(jié)構(gòu)設計
系統(tǒng)采用如圖1所示典型的電流控制型PFMBoostDC-DC變換器拓撲結(jié)構(gòu),虛線框內(nèi)為芯片原理框圖,框外為外圍器件連接示意圖。其中,STDN為芯片的使能端,低電平時關斷整個芯片以降低靜態(tài)功耗;SENSE為輸出電壓反饋采樣端;VFB為負載電流反饋采樣端;DRIVE為外部功率開關控制端;基準電壓通過電阻分壓產(chǎn)生A2比較器的參考電壓VRA2;A1比較器的參考電壓為VRA1;A1和A2通過一個二端與非門控制一個暫穩(wěn)態(tài)為1.7μs單穩(wěn)態(tài)電路;輸出級DRIVE驅(qū)動外部功率管QT。
系統(tǒng)將工作在兩個狀態(tài):連續(xù)導通模式(CCM)和不連續(xù)導通模式(DCM)。VIN上電,STDN置高電平,基準源為A2比較器提供的比較參考電壓為VRA2。由于系統(tǒng)剛啟動,A1、A2輸出高電平,單穩(wěn)態(tài)電路不觸發(fā),輸出高電平,外部功率管QT導通。當VSENSE>VRA1,A1輸出低電平,單穩(wěn)態(tài)電路觸發(fā),DRIVE電壓迅速被拉低,開始給外部C2充電,在RS2兩端電壓未達到A2比較參考電壓前,系統(tǒng)將重復上述過程,系統(tǒng)工作在連續(xù)導通模式。當RS2兩端電壓超過A2比較電壓VRA2時,A2比較器輸出低電平,單穩(wěn)態(tài)電路觸發(fā),外部功率管關斷,從此時起1.7μs內(nèi)L給C2充電,當L放完電后,C2開始放電,致使RS2兩端電壓仍然超過A2比較電壓,A2輸出低電平,單穩(wěn)態(tài)電路持續(xù)輸出低電平,外部功率管繼續(xù)處于關斷狀態(tài),系統(tǒng)工作在不連續(xù)導通模式。系統(tǒng)啟動升壓為連續(xù)導通模式,進入穩(wěn)態(tài)后系統(tǒng)為不連續(xù)導通模式。
[page]
電路原理與設計
1、開關限流控制電路
圖1中A1比較器、單穩(wěn)態(tài)觸發(fā)器、驅(qū)動放大器和外部開關管組成的環(huán)路為開關限流控制電路。假定單穩(wěn)態(tài)觸發(fā)器輸出高電平穩(wěn)態(tài),外部功率管QT導通,二極管D截止,電感L中的電流線性上升。當電感電流較小時,限流電阻RS1上的壓降小于30mV,A1比較器輸出低電平,不能觸發(fā)單穩(wěn)態(tài)觸發(fā)器翻轉(zhuǎn);而當電感電流上升至限流Ipk時,電阻RS1上的壓降達到VRA1,A1比較器輸出翻轉(zhuǎn),輸出低電平經(jīng)與非門控制單穩(wěn)電路進入暫穩(wěn)態(tài),外部功率管QT關斷。由于電感電流必須連續(xù),因此電感L的感應電動勢為左負右正,二極管D導通,電感L開始對C2進行充電,輸出電壓VOUT上升。這一過程將持續(xù)1.7μs至暫穩(wěn)態(tài)結(jié)束,單穩(wěn)態(tài)觸發(fā)器重新回到高電平穩(wěn)態(tài),再次使QT重復上述的開關過程,直至最終VOUT達到額定輸出電壓。
圖2為A1比較器電路,BIAS為偏置端,VA1為輸出端,VS為正向輸入端,SENSE為負向輸入端,即為外部電感電流Ipk檢測端。由于Q10、Q11、Q12偏置相同,故其提供的偏置電流相同。Q10、Q13、RS構(gòu)成A1比較器正向輸入支路。由于VCC和VBIAS電壓為常數(shù),Q13采用二極管連接方式,A點的電壓為VBE13+VS;由于Q13、Q14同為NPN管,其兩管的VBE閾值電壓相同,當VSENSE>VBE13+VS-VT(be)時,Q14截止,B點上升為高電平,Q15導通,VA1輸出低電平,通過控制與非門觸發(fā)單穩(wěn)電路,外部功率管關斷,VSENSE迅速下降為0,Q14導通,B點被拉至低電平,Q15關斷,VA1輸出高電平,此時控制信號為與非門所屏蔽,不觸發(fā)單穩(wěn)電路。電路進入1.7μs暫穩(wěn)態(tài),等待外部電感L放電結(jié)束。
由于系統(tǒng)外圍電路的主要功率損耗來源于反饋電阻RS1和電感L的寄生串聯(lián)電阻,所以可以通過低反饋電阻技術(shù)來降低系統(tǒng)外圍器件功耗。即通過調(diào)節(jié)RS可以提供一個盡可能小的比較參考電壓VRA1(約為30mV),對于電感:
當VRA1減小時,對于相同電感的Ipk,可以有效地減小RS1阻值,進而降低系統(tǒng)外圍器件功耗。
[page]
2、負載電流反饋電路
圖1中,電感L、二極管D、負載、檢測電阻RS2、A2比較器組成的環(huán)路為負載電流反饋電路。VFB端為A2比較器反向輸出端,即負載電流檢測端。當系統(tǒng)進入暫穩(wěn)態(tài)時,電感L通過二極管D給電容C2和負載供電。此時電感L給負載供電電流為Ipk,此時VFB端檢測電壓VFB達到最大為Ipk×RS2,大于A2比較器的正向參考電壓VRA2,A2比較器輸出低電平,通過與非門控制單穩(wěn)態(tài)觸發(fā),關斷外部功率管,而此時系統(tǒng)已經(jīng)進入暫穩(wěn)態(tài),外部功率管已經(jīng)處于關斷狀態(tài),A2比較器會持續(xù)觸發(fā)單穩(wěn)態(tài)。隨著電感電流IL減小,電容C2兩端電壓逐漸上升,當外部電感電流IL滿足式(2):
這時電容C2開始對負載供電。當電感電流IL降為0,系統(tǒng)進入電感電流非連續(xù)模式,這時只有電容C2給負載供電,當負載電流ILoad小于IL0時,A2比較器輸出高電平,其控制信號為與非門所屏蔽,不觸發(fā)單穩(wěn)態(tài)電路。此時外部功率管導通,開始給電感L充電。
Q9截止,VA2輸出高電平,單穩(wěn)態(tài)不觸發(fā)。當VFB>VRA2,Q9導通,VA2輸出低電平,觸發(fā)單穩(wěn)態(tài),關斷外部功率管。
[page]
模擬仿真結(jié)果
采用2μm15Vbipolar工藝進行電路設計,電路各模塊和外圍元件的連結(jié)如圖4所示。外圍元件的取值為:L=22μH,RS1=40mΩ,RS2=15Ω,C1=2.2μF,C2=2.2μF。采用Hpsice電路模擬軟件對電路進行模擬驗證。
在系統(tǒng)典型工作條件(VIN=3V,T=25℃,VOUT=10.8V)下,系統(tǒng)各端子的瞬態(tài)模擬輸出波形如圖4所示(典型情況下,系統(tǒng)大約只需200μs就達到穩(wěn)定的輸出電壓)。表1為典型工作條件下電學特性的模擬結(jié)果。
芯片版圖設計
雙極工藝相對于CMOS工藝具有噪聲小、速度快、驅(qū)動能力強等優(yōu)點,擁有較高的精度。芯片采用2μmbipolar工藝設計,由于電路結(jié)構(gòu)簡單,器件較少,版圖面積為0.67mm×1.28mm。
本文設計了一種用于彩色LCD背光照明的白光LED驅(qū)動芯片。采用PFM控制模式低反饋電阻技術(shù)、負載電流反饋技術(shù)實現(xiàn)低功耗恒流輸出的設計目標?;?μmbipolar工藝仿真驗證,在20mA典型應用時,電流調(diào)整率達到0.02mA/V,效率為80.1%。芯片能在8V的電源電壓下穩(wěn)定工作,最大靜態(tài)電流為152μA。該芯片擁有低功耗、電壓電流紋波系數(shù)小、成本低等優(yōu)點。
相關閱讀:
LED驅(qū)動器設計:如何用低成本實現(xiàn)高功率因數(shù)
http://me3buy.cn/opto-art/80021530
針對LED車前燈和DRL的LED驅(qū)動器設計方案
http://me3buy.cn/power-art/80021015
工程師推薦:低諧波、高功率因數(shù)AC/DC開關電源變換器設計
http://me3buy.cn/power-art/80021597