在要求短路電路保護(hù)時(shí),我們可以使用它來(lái)代替升壓轉(zhuǎn)換器。SEPIC轉(zhuǎn)換器的特點(diǎn)是單開(kāi)關(guān)工作和連續(xù)輸入電流,從而帶來(lái)較低的電磁干擾 (EMI)。這種拓?fù)洌ㄈ鐖D1所示)可使用兩個(gè)單獨(dú)的電感(或者由于電感的電壓波形類似),因此還可以使用一個(gè)耦合電感,如圖所示。因其體積和成本均小于兩個(gè)單獨(dú)的電感,耦合電感頗具吸引力。其存在的缺點(diǎn)是標(biāo)準(zhǔn)電感并非總是針對(duì)全部可能的應(yīng)用進(jìn)行優(yōu)化。
這種電路的電流和電壓波形與連續(xù)電流模式 (CCM) 反向電路類似。開(kāi)啟Q1時(shí),其利用耦合電感主級(jí)的輸入電壓,在電路中形成能量。關(guān)閉Q1時(shí),電感的電壓逆轉(zhuǎn),然后被鉗制到輸出電壓。電容C_AC便為SEPIC與反向電路的差別所在;Q1開(kāi)啟時(shí),次級(jí)電感電流流過(guò)它然后接地。Q1關(guān)閉時(shí),主級(jí)電感電流流過(guò)C_AC,從而增加流經(jīng)D1的輸出電流。相比反向電路,這種拓?fù)涞囊粋€(gè)較大好處是FET和二極管電壓均受到C_AC的鉗制,并且電路中很少有振鈴。這樣,我們便可以選擇使用更低的電壓,并由此而產(chǎn)生更高功效的器件。
由于這種拓?fù)渑c反向拓?fù)漕愃?,因此許多人會(huì)認(rèn)為要求有一套緊密耦合的繞組。然而,情況卻并非如此。圖2顯示了連續(xù)SEPIC的兩個(gè)工作狀態(tài),其變壓器已通過(guò)漏電感 (LL)、磁化電感 (LM) 和一個(gè)理想變壓器 (T) 建模。經(jīng)檢查,漏電感的電壓等于C_AC的電壓。因此,較小值C_AC或者較小漏電感的大AC電壓會(huì)形成較大的回路電流。較大的回路電流會(huì)降低轉(zhuǎn)換器的效率和EMI性能,而這種情況是我們所不希望出現(xiàn)的。減少這種大回路電流的一種方法是增加耦合電容(C_AC)。但是,這樣做是以成本、尺寸和可靠性為代價(jià)的。一種更為精明的方法是增加漏電感,其在指定某個(gè)定制磁性組件的情況下可以很輕松地實(shí)現(xiàn)。
有趣的是,極少的廠商已經(jīng)認(rèn)識(shí)到了這一事實(shí),并且許多廠商已經(jīng)針對(duì)SEPIC應(yīng)用生產(chǎn)出了低漏電感的電感。另一方面,Coilcraft擁有約0.5 uH漏電感的 47uH MSD1260,同時(shí)還于最新開(kāi)發(fā)出了這種設(shè)計(jì)的其他版本,其具有10uH 以上的漏電感,我們將在下次的【電源設(shè)計(jì)小貼士】中對(duì)其進(jìn)行介紹,敬請(qǐng)期待。