你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

精彩博客:?jiǎn)坞娫垂╇姷腘RZ向AMI轉(zhuǎn)換器的轉(zhuǎn)變

發(fā)布時(shí)間:2015-05-21 責(zé)任編輯:echolady

【導(dǎo)讀】交替?zhèn)魈?hào)反轉(zhuǎn)AMI編碼常應(yīng)用于經(jīng)過(guò)電纜數(shù)字?jǐn)?shù)據(jù)傳輸中。原因就在于這種AMI編碼沒(méi)有直流分量。本文講述了只使用門(mén)、觸發(fā)器、5V電源將NRZ輸入生成AMI波形的實(shí)例。


在經(jīng)過(guò)電纜的數(shù)字?jǐn)?shù)據(jù)傳輸中經(jīng)常使用交替?zhèn)魈?hào)反轉(zhuǎn)(AMI)編碼,因?yàn)檫@種編碼沒(méi)有直流分量。除此之外,AMI信號(hào)的帶寬也要比等效的歸零(RZ)碼低。正常情況下,為了產(chǎn)生諸如AMI這樣的雙極波形,需要使用正負(fù)兩個(gè)電源。另外,雙極波形產(chǎn)生電路可能要用到模擬元件。然而,本設(shè)計(jì)實(shí)例取消了所有這些要求,只使用一些門(mén)、一個(gè)觸發(fā)器和單個(gè)5V電源就能從NRZ輸入產(chǎn)生AMI波形。

參考圖1,NRZ信號(hào)(圖2a)與時(shí)鐘一起使用AND1門(mén)選通并產(chǎn)生RZ波形(圖2b)。這個(gè)RZ信號(hào)隨后連接到作為分頻器的D觸發(fā)器時(shí)鐘端。接著RZ信號(hào)與觸發(fā)器的Q和/Q輸出一起進(jìn)行選通,將AND2和NAND門(mén)輸出端的兩條線上的交變脈沖分開(kāi)來(lái)。在第2條線上使用NAND門(mén)以獲得反相的波形(圖2c)。

單電源供電的NRZ向AMI轉(zhuǎn)換器的轉(zhuǎn)變
圖1:NRZ到AMI轉(zhuǎn)換器使用單電源產(chǎn)生雙極脈沖。

由于NAND的延時(shí)要大于AND門(mén),因此在AND3輸出端使用AND4進(jìn)行補(bǔ)償(可以根據(jù)所用的邏輯系列器件改變)。AND4和NAND門(mén)的輸出驅(qū)動(dòng)75Ω電阻,進(jìn)而在門(mén)輸出端有效地增加電壓。如果兩個(gè)輸出都是高電平,電阻連接處的電壓就是高電平。如果其中一個(gè)輸出端是低,另一個(gè)是高,電阻連接處的電壓就是半高電平。當(dāng)兩個(gè)輸出端都是低電平時(shí),連接處的電壓接近于0V。這樣,在R1和R2連接點(diǎn)的波形就具有了圍繞直流電平的正負(fù)脈沖。這個(gè)信號(hào)通過(guò)隔直電容C1后,就能在輸出端得到直流電平為零的真正雙極波形(圖2d)。

單電源供電的NRZ向AMI轉(zhuǎn)換器的轉(zhuǎn)變
圖2:波形:(a)NRZ輸入;(b)AND4輸出;(c)NAND輸出;(d)AMI輸出

圖2顯示了仿真電路的波形。仿真器可以捕捉到在門(mén)輸出端出現(xiàn)的很小尖峰,不過(guò)這些尖峰不會(huì)在實(shí)際使用中產(chǎn)生問(wèn)題。所產(chǎn)生的NRZ信號(hào)速率是2.048Mb/s。由于使用的是TTL器件和5V電源,因此峰峰信號(hào)電平小于±2.5V。如果需要更高幅度,可以使用具有更高邏輯擺幅的CMOS器件。

相關(guān)閱讀:

集成高電流驅(qū)動(dòng)器設(shè)計(jì),可用于10-16位數(shù)字轉(zhuǎn)換器
三種隔離式DC/DC轉(zhuǎn)換器的電壓調(diào)節(jié)方案對(duì)比解析
元器件選型:最優(yōu)的Buck轉(zhuǎn)換器拓?fù)湓撊绾芜x?

要采購(gòu)轉(zhuǎn)換器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉