你的位置:首頁 > EMC安規(guī) > 正文
如何提高4H-SiC肖特基二極管和MOSFET的雪崩耐受性
發(fā)布時(shí)間:2020-08-17 來源:Microchip 責(zé)任編輯:wenwei
【導(dǎo)讀】半導(dǎo)體市場(chǎng)的最新趨勢(shì)是廣泛采用碳化硅(SiC)器件,包括用于工業(yè)和汽車應(yīng)用的肖特基勢(shì)壘二極管(SBD)和功率MOSFET。與此同時(shí),由于可供分析的現(xiàn)場(chǎng)數(shù)據(jù)有限,這些器件的長期可靠性成為一個(gè)需要解決的熱點(diǎn)問題。一些SiC供應(yīng)商已開始根據(jù)嚴(yán)格的工業(yè)和汽車(AEC-Q101)標(biāo)準(zhǔn)來認(rèn)證SiC器件,而另一些供應(yīng)商不但超出了這些認(rèn)證標(biāo)準(zhǔn)的要求,還能為惡劣環(huán)境耐受性測(cè)試提供數(shù)據(jù)。為了使SiC器件在任務(wù)和安全關(guān)鍵型應(yīng)用中保持較高的普及率,應(yīng)將這種認(rèn)證和測(cè)試策略與特定的設(shè)計(jì)規(guī)則相結(jié)合來實(shí)現(xiàn)高雪崩耐受性,這一點(diǎn)至關(guān)重要。
市場(chǎng)快速增長
SiC器件的市場(chǎng)份額預(yù)計(jì)將在未來幾年加速增長,主要推動(dòng)因素是運(yùn)輸行業(yè)的電氣化。SiC管芯將成為車載充電器和動(dòng)力傳動(dòng)牽引系統(tǒng)等應(yīng)用的模塊中的基本構(gòu)件。由于雪崩擊穿的臨界電場(chǎng)較高,因此高壓SiC器件的外形比同類硅器件小得多,并且可以在更高的開關(guān)頻率下工作。SiC的熱性能也十分出色,它不但擁有良好的散熱性能,還能在高溫下工作。實(shí)際上,最高工作溫度通常可達(dá)175 °C,很少超過200 °C,主要限制為裝配工藝(焊接金屬和封裝材料)。SiC器件本質(zhì)上比硅器件更高效,切換到SiC管芯可以極大減少模塊中單個(gè)管芯的數(shù)量。
隨著SiC器件從利基市場(chǎng)轉(zhuǎn)向主流市場(chǎng),與大規(guī)模生產(chǎn)爬坡效應(yīng)相關(guān)的主要挑戰(zhàn)正逐漸被克服。為輕松實(shí)現(xiàn)這種轉(zhuǎn)變,制造廠正在建立可與現(xiàn)存硅生產(chǎn)線共用工具的SiC生產(chǎn)線。這種安排可有效降低SiC管芯的成本,因?yàn)檫@樣做可與Si生產(chǎn)線分擔(dān)開銷。隨著晶圓供應(yīng)商大幅度提高產(chǎn)能,近來在晶圓供貨方面的限制已不再是問題。由于4H-SiC襯底和外延生長的不斷改進(jìn),現(xiàn)在可提供晶體缺陷密度極低的高質(zhì)量6英寸晶圓。根據(jù)電氣參數(shù)測(cè)試可知,晶圓質(zhì)量越高,SiC器件的產(chǎn)量就越高。
但請(qǐng)務(wù)必記住,由于這些器件僅僅上市幾年,因此其現(xiàn)場(chǎng)可靠性數(shù)據(jù)十分有限。此外,由于SiC器件自身也面臨著一系列挑戰(zhàn),因此其認(rèn)證比硅器件的認(rèn)證困難得多。在SiC器件中,反向偏置條件下的電場(chǎng)高出將近一個(gè)數(shù)量級(jí)。如果不采用適當(dāng)?shù)脑O(shè)計(jì)規(guī)則,這種高電場(chǎng)很容易損壞柵極氧化層。SiC柵極氧化層界面附近的陷阱密度也高得多。結(jié)果是,由于陷阱帶電,因此老化測(cè)試期間可能會(huì)出現(xiàn)不穩(wěn)定性。一直以來,我們都專注于提高長期可靠性,而取得的成果也令人欣慰,最近的報(bào)告顯示器件已通過嚴(yán)格的工業(yè)和汽車(AEC-Q101)標(biāo)準(zhǔn)認(rèn)證。
除此之外,SiC供應(yīng)商也已開始采取下一步行動(dòng),即為惡劣環(huán)境耐受性測(cè)試提供數(shù)據(jù)。
惡劣環(huán)境耐受性測(cè)試
作為示例,Microchip通過子公司Microsemi在其適用于700V、1200V和1700V電壓節(jié)點(diǎn)的SiC SBD和MOSFET上進(jìn)行了惡劣環(huán)境耐受性測(cè)試。測(cè)試表明,高水平的非鉗位感應(yīng)開關(guān)(UIS)耐受性對(duì)于保證器件的長期可靠性至關(guān)重要。同時(shí)還表明,在UIS測(cè)試期間,高瞬態(tài)電流流過反向偏置器件,并驅(qū)動(dòng)其進(jìn)入雪崩擊穿狀態(tài)。在高電流和高電壓的共同作用下,會(huì)產(chǎn)生大量熱量且溫度急劇上升。耐用功率MOSFET的局部最高溫度可達(dá)到500°C,遠(yuǎn)高于典型溫度額定值。
UIS的耐受性與生產(chǎn)線前端和后端的外延質(zhì)量和制造工藝密切相關(guān)。即使外延中的微小晶體缺陷或與工藝相關(guān)的缺陷也可能構(gòu)成薄弱環(huán)節(jié),導(dǎo)致器件在UIS測(cè)試期間過早失效。這就解釋了為什么對(duì)產(chǎn)品系列耐受性的全面分析中應(yīng)當(dāng)包含單脈沖和重復(fù)UIS(RUIS)測(cè)試。
單脈沖測(cè)試用作篩選測(cè)試,用于識(shí)別UIS耐受性較低的器件。為了保證產(chǎn)品數(shù)據(jù)手冊(cè)中的UIS額定值,所有器件在交付給客戶之前都應(yīng)經(jīng)過測(cè)試。不過,器件在現(xiàn)場(chǎng)投入使用期間可能會(huì)經(jīng)歷多次UIS事件。為了分析逐漸磨損的特性,需要重復(fù)測(cè)試。要深入分析特性,應(yīng)對(duì)器件施加大量脈沖,常見做法是100,000次沖擊。
在UIS脈沖期間,被測(cè)器件中的電流連續(xù)降低,而電壓基本保持恒定,但會(huì)因熱效應(yīng)而略微變化(圖1)。UIS脈沖的能量由脈沖開始時(shí)的最大電流和負(fù)載的電感定義。在測(cè)試過程中,通過改變電感值來調(diào)節(jié)能量。最大電流保持恒定;它等于SBD的正向電流額定值,也等于MOSFET的漏極電流額定值的三分之二。
圖1:UIS脈沖期間的RUIS測(cè)試設(shè)置以及電流和電壓的波形
RUIS測(cè)試具有特定的約束條件,主要目的是防止一個(gè)脈沖與下一個(gè)脈沖的溫度發(fā)生積聚。在施加新脈沖之前,務(wù)必確保器件溫度接近環(huán)境溫度。在圖1所示的測(cè)試設(shè)置中,使用熱電偶傳感器監(jiān)視器件的溫度,并調(diào)整脈沖重復(fù)頻率以獲得恒定的讀數(shù)。為了有助于冷卻器件,應(yīng)將其安裝在散熱器上風(fēng)扇下方的位置。
可實(shí)現(xiàn)高雪崩耐受性的器件設(shè)計(jì)
除了采用適當(dāng)?shù)臏y(cè)試過程之外,一流的UIS耐受性還需要使用下面的一組設(shè)計(jì)規(guī)則:
● 高壓端接設(shè)計(jì)有足夠高的固有擊穿電壓,以確保有效區(qū)域首先進(jìn)入雪崩狀態(tài)。在這種情況下,能量會(huì)分散到整個(gè)有效區(qū)域上,而不是在狹窄的端接中,后一種情況會(huì)導(dǎo)致過早失效。
● MOSFET的JFET區(qū)域中的電場(chǎng)屏蔽對(duì)于保護(hù)柵極氧化層非常關(guān)鍵。應(yīng)當(dāng)謹(jǐn)慎優(yōu)化用于界定JFET區(qū)域的P型摻雜阱的設(shè)計(jì)和注入方案,以便提供足夠的屏蔽而不會(huì)嚴(yán)重影響導(dǎo)通狀態(tài)電阻。
● 利用具有高導(dǎo)熱率的鈍化材料為熱量通過管芯的頂部耗散提供了路徑。
使用這些規(guī)則設(shè)計(jì)的肖特基二極管和功率MOSFET在惡劣環(huán)境耐受性測(cè)試中均表現(xiàn)良好。對(duì)SBD的測(cè)試持續(xù)到單脈沖和重復(fù)UIS失效為止,同時(shí)還監(jiān)視了多個(gè)直流參數(shù)。這項(xiàng)測(cè)試的結(jié)果表明,器件的正向電壓和反向泄漏電流十分穩(wěn)定,而反向擊穿電壓則略有增加,這可歸因于SiC上表面附近的自由載流子俘獲。即將失效之前的脈沖能量如圖2所示。UIS耐受性隨器件額定電壓的增大而提高。鑒于大部分熱量在外延區(qū)域產(chǎn)生,這種趨勢(shì)不難解釋。隨著外延厚度因額定電壓的增大而增加,每單位體積產(chǎn)生的熱量會(huì)減少,這反過來會(huì)降低器件中的溫度。由于重復(fù)測(cè)試的原因,UIS的耐受性會(huì)系統(tǒng)性降低,但程度很小。與單脈沖UIS相比,差異小于10%。多個(gè)UIS脈沖沒有強(qiáng)累加效應(yīng),預(yù)計(jì)SBD在現(xiàn)場(chǎng)投入使用期間將保持高耐受性。
圖2:700V、1200V和1700V SiC SBD失效前每個(gè)活動(dòng)區(qū)域的比能
MOSFET惡劣環(huán)境耐受性特性分析應(yīng)重點(diǎn)關(guān)注柵極氧化層的長期可靠性,這無需對(duì)器件施壓至失效。作為替代,可使用由100,000個(gè)能量相對(duì)較低的脈沖組成的重復(fù)測(cè)試。舉例來說,Microsemi 1200V/40 mΩ MOSFET使用雪崩耐受性規(guī)則進(jìn)行設(shè)計(jì),通過100 mJ脈沖進(jìn)行測(cè)試,其單脈沖UIS額定值為2.0J。大多數(shù)直流參數(shù)不受影響;不過,由于該測(cè)試對(duì)柵極氧化層施壓,因此會(huì)觀察到柵極泄漏的適度增加。為了確定長期可靠性是否受到損害,我們對(duì)器件施加了隨時(shí)間變化的介電擊穿。圖3報(bào)告了對(duì)各種器件的柵極施加50 µA直流電流時(shí)的失效時(shí)間,具體包括使用公司的雪崩耐受性規(guī)則開發(fā)的Microsemi SiC器件以及其他三家領(lǐng)先供應(yīng)商提供的器件。
圖3:四家供應(yīng)商提供的1200V MOSFET的TDDB失效時(shí)間
堅(jiān)持采用SiC
在工業(yè)和汽車市場(chǎng)中采用SiC器件時(shí),需滿足嚴(yán)格的長期可靠性要求。滿足這些要求的最佳策略是使產(chǎn)品通過汽車AEC-Q101標(biāo)準(zhǔn)認(rèn)證,并對(duì)尚未標(biāo)準(zhǔn)化的極端環(huán)境耐受性測(cè)試進(jìn)行特性分析。通過應(yīng)用設(shè)計(jì)規(guī)則來實(shí)現(xiàn)高雪崩耐受性同樣十分重要。這些措施一起使用時(shí),不僅有助于確保SiC器件在快速普及的道路上繼續(xù)前進(jìn),同時(shí)還能提供這些應(yīng)用所需的長期可靠性。
作者:
Microchip子公司Microsemi器件設(shè)計(jì)工程師Amaury Gendron-Hansen
Microchip子公司MicrosemiSiC技術(shù)開發(fā)總監(jiān)Avinash Kashyap
Microchip子公司Microsemi器件/開發(fā)工程總監(jiān)Dumitru Sdrulla
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器