你的位置:首頁(yè) > EMC安規(guī) > 正文

PCB布線(xiàn)在電磁兼容性設(shè)計(jì)中的影響

發(fā)布時(shí)間:2013-03-05 責(zé)任編輯:Lynnjiao

【導(dǎo)讀】隨著電子技術(shù)的發(fā)展,各種電子產(chǎn)品經(jīng)常在一起工作,它們之間的干擾越來(lái)越嚴(yán)重,所以電磁兼容問(wèn)題成為一個(gè)電子系統(tǒng)能否正常工作的關(guān)鍵。同樣,隨著PCB的密度越來(lái)越高,PCB設(shè)計(jì)的好壞對(duì)電路的干擾及抗干擾能力影響很大。

要使電子電路獲得最佳性能,除了元器件的選擇和電路設(shè)計(jì)之外,良好的PCB布線(xiàn)在電磁兼容性中也是一個(gè)非常重要的因素。
 
隨著高速DSP技術(shù)的廣泛應(yīng)用,相應(yīng)的高速DSP的PCB設(shè)計(jì)就顯得十分重要。由于DSP是一個(gè)相當(dāng)復(fù)雜、種類(lèi)繁多并有許多分系統(tǒng)的數(shù)、?;旌舷到y(tǒng),所以來(lái)自外部的電磁輻射以及內(nèi)部元器件之間、分系統(tǒng)之間和各傳輸通道間的串?dāng)_對(duì)DSP及其數(shù)據(jù)信息所產(chǎn)生的干擾,已嚴(yán)重地威脅著其工作的穩(wěn)定性、可靠性和安全性。據(jù)統(tǒng)計(jì),干擾引起的DSP事故占其總事故的90%左右。因此設(shè)計(jì)一個(gè)穩(wěn)定、可靠的DSP系統(tǒng),電磁兼容和抗干擾至關(guān)重要。
 
DSP的電磁干擾環(huán)境
 
電磁干擾的基本模型由電磁干擾源、耦合路徑和接收機(jī)3部分組成,如圖1所示。

電磁干擾的基本模型
圖1:電磁干擾的基本模型

電磁干擾源包含微處理器、微控制器、靜電放電、瞬時(shí)功率執(zhí)行元件等。隨著大量高速半導(dǎo)體器件的應(yīng)用,其邊沿跳變速率非???,這種電路可以產(chǎn)生高達(dá)300 MHz的諧波干擾。耦合路徑可以分為空間輻射電磁波和導(dǎo)線(xiàn)傳導(dǎo)的電壓與電流。噪聲被耦合到電路中的最簡(jiǎn)單方式是通過(guò)導(dǎo)體的傳遞,例如,有一條導(dǎo)線(xiàn)在一個(gè)有噪聲的環(huán)境中經(jīng)過(guò),這條導(dǎo)線(xiàn)通過(guò)感應(yīng)接收這個(gè)噪聲并且將其傳遞到電路的其他部分,所有的電子電路都可以接收傳送的電磁干擾。例如,在數(shù)字電路中,臨界信號(hào)最容易受到電磁干擾的影響;模擬的低級(jí)放大器、控制電路和電源調(diào)整電路也容易受到噪聲的影響。
  
DSP電路板的布線(xiàn)和設(shè)計(jì)
  
良好的電路板布線(xiàn)在電磁兼容性中是一個(gè)非常重要的因素,一個(gè)拙劣的電路板布線(xiàn)和設(shè)計(jì)會(huì)產(chǎn)生很多電磁兼容問(wèn)題,即使加上濾波器和其他元器件也不能解決這些問(wèn)題。
  
正確的電路布線(xiàn)和設(shè)計(jì)應(yīng)該達(dá)到如下3點(diǎn)要求:

(1)電路板上的各部分電路之間存在干擾,電路仍能正常工作;
(2)電路板對(duì)外的傳導(dǎo)發(fā)射和輻射發(fā)射盡可能低,達(dá)到有關(guān)標(biāo)準(zhǔn)要求;
(3)外部的傳導(dǎo)干擾和輻射干擾對(duì)電路板上的電路沒(méi)有影響。
 
元器件的布置
  
(1)元器件布置的首要問(wèn)題是對(duì)元器件進(jìn)行分組。元器件的分組原則有:按電壓不同分;按數(shù)字電路和模擬電路分;按高速和低速信號(hào)分和按電流大小分。一般情況下都按照電壓不同分或按數(shù)字電路與模擬電路分。
(2)所有的連接器都放在電路板的一側(cè),盡量避免從兩側(cè)引出電纜。
(3)避免讓高速信號(hào)線(xiàn)靠近連接器。
(4)在元器件安排時(shí)應(yīng)考慮盡可能縮短高速信號(hào)線(xiàn),如時(shí)鐘線(xiàn)、數(shù)據(jù)線(xiàn)和地址線(xiàn)等。
  
地線(xiàn)和電源線(xiàn)的布置
  
地線(xiàn)布置的最終目的是為了最小化接地阻抗,以此減小從電路返回到電源之間的接地回路電勢(shì),即減小電路從源端到目的端線(xiàn)路和地層形成的環(huán)路面積。通常增加環(huán)路面積是由于地層隔縫引起的。如果地層上有縫隙,高速信號(hào)線(xiàn)的回流線(xiàn)就被迫要繞過(guò)隔縫,從而增大了高頻環(huán)路的面積,如圖2所示。

高速信號(hào)線(xiàn)環(huán)路
圖2:高速信號(hào)線(xiàn)環(huán)路  

圖2中高速線(xiàn)與芯片之間進(jìn)行信號(hào)傳輸。圖2(a)中沒(méi)有地層隔縫,根據(jù)“電流總是走阻抗最小的途徑”,此時(shí)環(huán)路面積最小。圖2(b)中,有地層隔縫,此時(shí)地環(huán)路面積增大,這樣就產(chǎn)生如下后果:
  
(1)增大向空間的輻射干擾,同時(shí)易受空間磁場(chǎng)的影響;
(2)加大與板上其他電路產(chǎn)生磁場(chǎng)耦合的可能性;
(3)由于環(huán)路電感加大,通過(guò)高速線(xiàn)輸出的信號(hào)容易產(chǎn)生振蕩;
(4)環(huán)路電感上的高頻壓降構(gòu)成共模輻射源,并通過(guò)外接電纜產(chǎn)生共模輻射。
  
通常地層上的隔縫不是在分地時(shí)、有意識(shí)地加上的,有時(shí)隔縫是因?yàn)榘迳系倪^(guò)孔過(guò)于接近而產(chǎn)生的,因此在PCB設(shè)計(jì)中應(yīng)盡量避免該種情況發(fā)生。
  
電源線(xiàn)的布置要和地線(xiàn)結(jié)合起來(lái)考慮,以便構(gòu)成特性阻抗盡可能小的供電線(xiàn)路。為了減小供電用線(xiàn)的特性阻抗,電源線(xiàn)和地線(xiàn)應(yīng)該盡可能的粗,并且相互靠近,使供電回路面積減到最小,而且不同的供電環(huán)路不要相互重疊。在集成芯片的電源腳和地腳之間要加高頻去耦電容,容量為O.01~O.1μF,而且為了進(jìn)一步提高電源的去耦濾波的低頻特性,在電源引入端要加上1個(gè)高頻去耦電容和1個(gè)1~10μF的低頻濾波電容。
  
在多層電路板中,電源層和地層要放置在相鄰的層中,從而在整個(gè)電路板上產(chǎn)生一個(gè)大的PCB電容消除噪聲。速度最快的關(guān)鍵信號(hào)和集成芯片應(yīng)當(dāng)布放在臨近地層一邊,非關(guān)鍵信號(hào)則布放在靠近電源層一邊。因?yàn)榈貙颖旧砭褪怯脕?lái)吸收和消除噪聲的,其本身幾乎是沒(méi)有噪聲的。

信號(hào)線(xiàn)的布置
 
不相容的信號(hào)線(xiàn)之間能產(chǎn)生耦合干擾,所以在信號(hào)線(xiàn)的布置上要把它們隔離,隔離時(shí)采取的措施有:

(1)不相容信號(hào)線(xiàn)應(yīng)相互遠(yuǎn)離,不要平行,分布在不同層上的信號(hào)線(xiàn)走向應(yīng)相互垂直,這樣可以減少線(xiàn)間的電場(chǎng)和磁場(chǎng)耦合干擾;
(2)高速信號(hào)線(xiàn)特別是時(shí)鐘線(xiàn)要盡可能的短,必要時(shí)可在高速信號(hào)線(xiàn)兩邊加隔離地線(xiàn);
(3)信號(hào)線(xiàn)的布置最好根據(jù)信號(hào)流向順序安排,一個(gè)電路的輸入信號(hào)線(xiàn)不要再折回輸入信號(hào)線(xiàn)區(qū)域,因?yàn)檩斎刖€(xiàn)與輸出線(xiàn)通常是不相容的。
 
當(dāng)高速數(shù)字信號(hào)的傳輸延時(shí)時(shí)間Td>Tr(Tr為信號(hào)的脈沖上升時(shí)間)時(shí),應(yīng)考慮阻抗匹配問(wèn)題。因?yàn)殄e(cuò)誤的終端阻抗匹配將會(huì)引起信號(hào)反饋和阻尼振蕩。通常線(xiàn)路終端阻抗匹配的方法有串聯(lián)源端接法、并聯(lián)端接法、RC端接法、Thevenin端接法4種。
 
(1)串聯(lián)源端接法
 
圖3為串聯(lián)源端接電路。

串聯(lián)源端接電路
圖3:串聯(lián)源端接電路 

源端阻抗Zs和分布在傳輸線(xiàn)上的阻抗Zo之間,加上源端接電阻Rs,用來(lái)完成阻抗匹配,Rs還能吸收負(fù)載的反饋。這里的Rs必須離源端盡可能的近,理論上應(yīng)為Rs=Zo-Zs中的實(shí)數(shù)值。一般Rs取15~75Ω。
 
(2)并聯(lián)端接法
 
圖4為并聯(lián)端接電路。附加1個(gè)并聯(lián)端電阻Rp,這樣Rp與ZL并聯(lián)后就與Zo相匹配。這個(gè)方法需要源驅(qū)動(dòng)電路來(lái)驅(qū)動(dòng)一個(gè)較高的電流,能耗很高,所以在功耗小的系統(tǒng)中不適用。

并聯(lián)端接電路
圖4:并聯(lián)端接電路 

(3)RC端接法
 
圖5為RC端接電路。該方法類(lèi)似于并聯(lián)端接電路,但引入了電容C1,此時(shí)R用于提供匹配Zo的阻抗。C1為R提供驅(qū)動(dòng)電流并過(guò)濾掉從傳輸線(xiàn)到地的射頻能量。因此與并聯(lián)端接方法相比,RC端接電路需要的源驅(qū)動(dòng)電流更少。R和C1的值由Zo,Tpd(環(huán)路傳輸延遲)和終端負(fù)載電容值Cd決定。時(shí)間為常數(shù),RC=3Tpd,其中R∥ZL=Zo,C=C1∥Cd。

RC端接電路
圖5:RC端接電路

(4)Thevenin端接法
 
圖6為T(mén)hevenin端接電路。該電路由上拉電阻R1和下拉電阻R2組成,這樣就使邏輯高和邏輯低與目標(biāo)負(fù)載相符。其中,R1和R2的值由R1∥R2=Zo決定,R1+R2+ZL的值要保證最大電流不能超過(guò)驅(qū)動(dòng)電路容量。

Thevenin端接電路
圖6:Thevenin端接電路

本文通過(guò)對(duì)電子產(chǎn)品電磁環(huán)境的分析,確定高速DSP系統(tǒng)中產(chǎn)生干擾的主要原因,并針對(duì)這些原因,通過(guò)對(duì)高速DSP系統(tǒng)的多層板布局、器件布局以及PCB布線(xiàn)等方面進(jìn)行分析,給出有效降低DSP系統(tǒng)的干擾、提高電磁兼容性能的措施。從設(shè)計(jì)層次保證了高速DSP系統(tǒng)的有效性和可靠性。合理布局設(shè)計(jì),減少噪聲,降低干擾,避開(kāi)不必要的失誤,對(duì)系統(tǒng)性能的發(fā)揮起到不可低估的作用。

要采購(gòu)導(dǎo)線(xiàn)么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉