應(yīng)用于電機(jī)驅(qū)動(dòng)的隔離運(yùn)放單端和差分輸出對(duì)采樣性能的影響
發(fā)布時(shí)間:2020-09-11 來源:Yuan Tan 責(zé)任編輯:wenwei
【導(dǎo)讀】電機(jī)驅(qū)動(dòng)器是用來控制各種電機(jī),比如AC變頻器,伺服電機(jī)的一種控制器。一般是通過位置、速度和力矩三種方式對(duì)電機(jī)進(jìn)行控制,實(shí)現(xiàn)傳動(dòng)系統(tǒng)定位。高分辨率、精確電壓電流測(cè)量在需要高性能扭矩和運(yùn)動(dòng)控制的工業(yè)電機(jī)驅(qū)動(dòng)應(yīng)用中至關(guān)重要。因?yàn)楣I(yè)電機(jī)驅(qū)動(dòng)器需要滿足 (IEC) 61800-5-1的電氣安全的需求,所以相應(yīng)需要采取普通或加強(qiáng)型的隔離電路設(shè)計(jì)。
隔離運(yùn)放在電機(jī)驅(qū)動(dòng)中的應(yīng)用:
電機(jī)驅(qū)動(dòng)器是用來控制各種電機(jī),比如AC變頻器,伺服電機(jī)的一種控制器。一般是通過位置、速度和力矩三種方式對(duì)電機(jī)進(jìn)行控制,實(shí)現(xiàn)傳動(dòng)系統(tǒng)定位。高分辨率、精確電壓電流測(cè)量在需要高性能扭矩和運(yùn)動(dòng)控制的工業(yè)電機(jī)驅(qū)動(dòng)應(yīng)用中至關(guān)重要。因?yàn)楣I(yè)電機(jī)驅(qū)動(dòng)器需要滿足 (IEC) 61800-5-1的電氣安全的需求,所以相應(yīng)需要采取普通或加強(qiáng)型的隔離電路設(shè)計(jì)。相較于霍爾效應(yīng)傳感器、磁通門傳感器與電流互感器, 分流電阻器加隔離運(yùn)放的方案在線性度、帶寬和漂移等性能更好。在電機(jī)驅(qū)動(dòng)器中,通常會(huì)在功率板用隔離采樣運(yùn)放來對(duì)相電流,母線電流和母線電壓等進(jìn)行采樣,如下圖1:
圖1 電機(jī)驅(qū)動(dòng)器電壓電流采樣
下圖所示,是使用隔離運(yùn)放來進(jìn)行相電流采樣的常見結(jié)構(gòu)和內(nèi)部原理圖。
圖2 相電流采樣的常見結(jié)構(gòu)
應(yīng)用在該系統(tǒng)里的隔離運(yùn)放TI明星產(chǎn)品如下表:
表1 應(yīng)用于電機(jī)驅(qū)動(dòng)系統(tǒng)的隔離運(yùn)放明星產(chǎn)品
隔離運(yùn)放單端和差分輸出對(duì)采樣性能的影響:
運(yùn)放的差分輸出結(jié)構(gòu)因具有更好的抗干擾性而廣泛存在,但是后級(jí)MCU的ADC一般為單端輸入,所以常規(guī)做法是在靠近MCU內(nèi)置ADC輸入的位置,加上一個(gè)單端轉(zhuǎn)差分的運(yùn)放。那么經(jīng)常會(huì)產(chǎn)生疑問,能不能不額外加這個(gè)運(yùn)放,直接將隔離運(yùn)放的差分輸出的一個(gè)腳接地,另一個(gè)腳接入MCU的內(nèi)置ADC呢?如果這樣做,會(huì)帶來什么問題呢?
我們以AMC1311為例來探討這個(gè)問題。
首先,為了更直觀地了解AMC1311的輸出性能,AMC1311的差分輸出Outp和Outn的波形可以通過TINA仿真電路得到, TI.com提供PSpice模型:https://www.ti.com/product/AMC1311#design-development
圖3 AMC1311的TINA仿真模型參考電路
輸入采樣量Vin=0~2V正弦,輸出波形如下圖4,
Outp: 1.44~2.44V, ΔVpp_p=1V
Outn: 0.44~1.44V, ΔVpp_n=1V
Out: 0~2V, ΔVpp=2V
Outp和Outn的波形以1.44V呈鏡像。
圖4 AMC1311的pspice仿真輸出波形
如果將Outn懸空或通過電阻接地(注意,輸出腳不可以直接接地,接地電阻建議10k?),將Outp直接接入后級(jí)單端輸入ADC里。帶來的影響:
1. 共模輸出電壓Vcmout誤差的影響
從AMC1311數(shù)據(jù)手冊(cè)得知:Vcmout=1.44±50mV。若差分結(jié)構(gòu)輸出,Outn與Outp因?yàn)榛コ淑R像,兩者相減得到Out,Vcmout的50mV的誤差可以認(rèn)為相互抵消,忽略不記。但是單端結(jié)構(gòu)則不然。這個(gè)±50mV會(huì)帶來原始的Vos誤差。對(duì)于單端結(jié)構(gòu),當(dāng)輸入腳短接,Out的值理論上為1.44V,如果不是, 那么需要進(jìn)一步的校準(zhǔn),校準(zhǔn)工作一般在MCU的算法中進(jìn)行。
1. 對(duì)后級(jí)ADC的SNR的影響
SNR(signal to noise ratio)是重要的AC指標(biāo),影響ADC的有效位數(shù)ENOB,理想公式為:
而SNR的公式定義如下:
圖5 SNR定義
單端輸出的交流幅值是差分輸出的一半,所以如果采用單端結(jié)構(gòu),那么SNR指標(biāo)會(huì)變差,進(jìn)而影響ADC有效位數(shù)。 所以,相較于差分輸出結(jié)構(gòu),單端輸出結(jié)構(gòu)對(duì)于運(yùn)放輸出范圍和后級(jí)ADC輸入范圍的利用率僅為一半,會(huì)帶來對(duì)于Vos以及SNR指標(biāo)的不良影響??蛻粼诓捎眠@種結(jié)構(gòu)時(shí),需要考慮這些不良影響。
隔離運(yùn)放輸出單端轉(zhuǎn)差分輸出方案推薦
通過添加后級(jí)運(yùn)放可以在實(shí)現(xiàn)差分轉(zhuǎn)單端的同時(shí)進(jìn)行信號(hào)調(diào)理可以完美適配后級(jí)ADC的輸入要求,解決上述問題。圖6所示是示意電路,設(shè)計(jì)詳情可以參考TI的技術(shù)文章sbaa229:Interfacing a Differential-Output (Isolated) Amplifier to a Single-Ended Input ADC。
圖6 差分轉(zhuǎn)單端外部電路
對(duì)于提供內(nèi)置差分輸入ADC的MCU,比如C2000系列的TMS320F2837x同時(shí)提供16bit差分輸入的ADC通道和12bit單端輸入的ADC通道,可以為信號(hào)處理提供更多自由度。如果想要追求更高的精度,可以免去中間電路,直接將差分運(yùn)放的輸出接到對(duì)應(yīng)的差分輸入ADC模塊,同時(shí)獲得更好的精度和信噪比。如圖7:
圖7 AMC1311和TMS320F283777S電路示意圖
本文介紹在應(yīng)用電機(jī)驅(qū)動(dòng)器中,采用隔離運(yùn)放的系統(tǒng)架構(gòu)和TI明星產(chǎn)品。涉及了相關(guān)電路設(shè)計(jì)和外部信號(hào)調(diào)理與MCU的配合。結(jié)合后級(jí)ADC,深入討論了隔離運(yùn)放單端結(jié)構(gòu)輸出和差分結(jié)構(gòu)輸出對(duì)整體采樣性能的影響,提供了相應(yīng)的分析和建議。
總結(jié)來說,如果采用內(nèi)置差分輸入ADC的MCU,比如C2000系列的TMS320F2837x,可以免去中間電路,直接將差分運(yùn)放的輸出接到對(duì)應(yīng)的差分輸入ADC模塊,同時(shí)獲得更好的精度和信噪比;如果采用內(nèi)置單端輸入ADC的MCU,添加一顆簡(jiǎn)單運(yùn)放比如TLV6001,可以在實(shí)現(xiàn)差分轉(zhuǎn)單端的同時(shí)進(jìn)行信號(hào)調(diào)理可以更加完美地適配后級(jí)ADC的輸入要求。如果想要省去額外調(diào)理運(yùn)放,可以采用一端電阻接地,但需要考慮對(duì)于采樣準(zhǔn)確度和信噪比的不良影響。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索