你的位置:首頁 > 互連技術(shù) > 正文

如何控制高速數(shù)字接口的EMI問題

發(fā)布時(shí)間:2023-01-29 責(zé)任編輯:lina

【導(dǎo)讀】當(dāng)今高速數(shù)字接口使用的數(shù)據(jù)傳輸速率超過許多移動(dòng)通信設(shè)備(如智能手機(jī)和平板電腦)的工作頻率。需要對(duì)接口進(jìn)行精心設(shè)計(jì),以管理接口產(chǎn)生的本地電磁輻射,避免接口信號(hào)受其他本地射頻的干擾。本文探討了管控高速數(shù)字接口EMI的若干最重要技術(shù),說明了它們是如何有助于解決EMI問題的。


當(dāng)今高速數(shù)字接口使用的數(shù)據(jù)傳輸速率超過許多移動(dòng)通信設(shè)備(如智能手機(jī)和平板電腦)的工作頻率。需要對(duì)接口進(jìn)行精心設(shè)計(jì),以管理接口產(chǎn)生的本地電磁輻射,避免接口信號(hào)受其他本地射頻的干擾。本文探討了管控高速數(shù)字接口EMI的若干最重要技術(shù),說明了它們是如何有助于解決EMI問題的。

小尺寸且低成本的高速串行(HSS)接口對(duì)那些必須要體積小、功耗低、重量輕的移動(dòng)設(shè)備尤為可貴。當(dāng)移動(dòng)設(shè)備必須與遠(yuǎn)程網(wǎng)絡(luò)通信時(shí),會(huì)發(fā)生電磁干擾(EMI),因?yàn)楝F(xiàn)代HSS接口使用的數(shù)據(jù)速率往往高于移動(dòng)設(shè)備所使用的無線通信頻率。

為實(shí)現(xiàn)成功的移動(dòng)通信產(chǎn)品,這些產(chǎn)品內(nèi)所有組件必須要各司其職、和平共處。這不僅意味著任何不期望產(chǎn)生的射頻信號(hào)必須不干擾任何有意發(fā)射的射頻信號(hào),還意味著任何有意的射頻信號(hào)必須不干擾任何其它電路的工作。這就是所謂的相互透明原則。任何電路的操作都是透明的——這意味著不干擾到任何其它電路的工作。至關(guān)重要的是,規(guī)范制定機(jī)構(gòu)必須要特別注意從接口到射頻,以及從射頻到接口的EMI,因?yàn)闊o論接口如何能“獨(dú)善其身”,只要它易受干擾或本身發(fā)射干擾,整個(gè)產(chǎn)品就不會(huì)正常工作。MIPI聯(lián)盟已經(jīng)開發(fā)出兩種非常關(guān)注相互透明度的規(guī)范。

電磁科學(xué)告訴我們(根據(jù)麥克斯韋方程):電子移動(dòng)時(shí),一定會(huì)產(chǎn)生射頻信號(hào)。在設(shè)計(jì)時(shí),可采用七種主要技術(shù)管理EMI,它們是:隔離、信號(hào)幅值、偏移范圍、數(shù)據(jù)速率、信號(hào)均衡、壓擺率控制和波形整形。這些技術(shù)各有不同功用,接下來我們將逐一討論。

隔離

物理隔離可能是最顯而易見的技術(shù)。對(duì)射頻信號(hào)來說,如果我們能將其“屏蔽”,那它就不會(huì)干擾任何其他信號(hào)。雖然隔離永遠(yuǎn)不會(huì)盡善盡美,且在蜂窩或無線局域網(wǎng)頻率,實(shí)際的隔離分貝值在20~40dB之間。達(dá)到這種水平的隔離對(duì)解決EMI問題通常必不可少。因此,仔細(xì)測量IC封裝和PCB布局可提供的隔離非常重要。
  

如何控制高速數(shù)字接口的EMI問題

圖1:用于當(dāng)代表貼射頻封裝的一個(gè)可能的隔離罩。


信號(hào)幅度

降低接口信號(hào)的幅值肯定會(huì)降低EMI,但效果不大。若信號(hào)幅值降低一半,EMI僅降低6dB。這可能足以擺脫一個(gè)閉鎖問題(close problem),但該方法也同時(shí)降低了接收器裕度,并可能導(dǎo)致接口錯(cuò)誤?;诖耍詈檬菍⑵渥鳛閼?yīng)對(duì)EMI問題的最后手段。

漂移和平衡

漂移是差分信號(hào)的兩個(gè)分量間的時(shí)間偏移。平衡是差分信號(hào)兩個(gè)分量間的幅度匹配。這兩個(gè)參數(shù)基本由接口驅(qū)動(dòng)器電路決定,且最好將其一起分析。如圖2所示,當(dāng)信號(hào)平衡在10%以內(nèi),與漂移造成的EMI影響比,信號(hào)平衡的確切值顯得沒那么重要。這意味著,從EMI的角度看,設(shè)計(jì)接口驅(qū)動(dòng)電路時(shí),盡量減少漂移遠(yuǎn)比致力幅值平衡事半功倍。

如何控制高速數(shù)字接口的EMI問題

圖2:信號(hào)平衡和漂移的組對(duì)比。


該圖表明,管理漂移比得到一個(gè)非常閉合的信號(hào)平衡要重要得多。甚至在2%的UI漂移時(shí),信號(hào)平衡誤差高達(dá)10%的影響也微不足道。僅當(dāng)漂移百分百為零時(shí)(一個(gè)不太可能的情況),信號(hào)平衡才變得重要。

數(shù)據(jù)傳輸速率

數(shù)字信號(hào)的射頻頻譜具有不同特性,從EMI的角度看,最重要的是該數(shù)據(jù)速率和其整數(shù)倍速率的頻譜零值。圖3,清楚地展示了這些頻譜零值。

這些零值獨(dú)立存在于任何信號(hào)濾波。通過改變數(shù)據(jù)速率,而非將頻譜零值移到一個(gè)射頻接收器頻帶附近以除去進(jìn)入接收器的EMI,是種切實(shí)可行的選擇。對(duì)必須識(shí)取多個(gè)衛(wèi)星發(fā)回的極其微弱信號(hào)的GPS接收器來說,這尤為重要。圖3顯示了這種用于幫助保護(hù)GPS接收器的技術(shù),數(shù)據(jù)速率從1.248Gbps(圖3a)變?yōu)?.456Gbps(圖3b)。

如何控制高速數(shù)字接口的EMI問題

   ?。╝)


如何控制高速數(shù)字接口的EMI問題

    (b)

  圖3:改變接口數(shù)據(jù)速率會(huì)移動(dòng)頻譜零值。這是無需任何濾波、能降低特定頻帶EMI的一種特別有效的方法。



壓擺率

接口攜帶的所有必要信息位于主譜瓣。頻譜旁瓣攜帶數(shù)據(jù)波形變換信息,而非數(shù)據(jù)本身。對(duì)因旁瓣(這些旁瓣頻率高于數(shù)據(jù)速率)能量產(chǎn)生的EMI來說,可以通過減少每個(gè)波形變換的壓擺率來抑制。這么做之所以有效,是因?yàn)橐馔獾纳漕l信號(hào)的總帶寬不由數(shù)據(jù)速率掌控,而是由數(shù)據(jù)波形的最快變換(邊沿)決定的。

圖4a(頂部)說明了這種技術(shù)確實(shí)影響到接口信號(hào)的“眼圖”。雖然完全睜開的眼的寬度變窄了,但眼頂部和底部間的分離沒受影響。這是使用該過濾技術(shù)必付的代價(jià)。

請(qǐng)注意:擺率控制僅降低了旁瓣幅值。對(duì)主瓣的任何影響都可以忽略不計(jì)。這有利有弊:好處是,這意味著,擺率控制并不會(huì)稀釋數(shù)據(jù)內(nèi)容。壞處是:僅當(dāng)干擾頻率來從主瓣時(shí),會(huì)使該技術(shù)無效?;诖嗽?,如采用M-PHY的MIPI Alliance DigRFSM等應(yīng)用,人們傾向使用每個(gè)都工作于較低數(shù)據(jù)速率的多條信道,而非一條工作于較高數(shù)據(jù)速率的信道。

如何控制高速數(shù)字接口的EMI問題

  (a)
 

如何控制高速數(shù)字接口的EMI問題

(b)

圖4:壓擺率控制對(duì)差分信號(hào)的頻率較高旁瓣的影響:頂部)眼圖的邊緣變換時(shí)間定義;底部)與a圖顯示的變換相應(yīng)的頻譜。



波形整形


實(shí)施壓擺率控制的直接方法是調(diào)整電流源充放電電容。這就產(chǎn)生了如圖3及下面圖5a中所示的直線變換。其它波形形狀也確會(huì)影響EMI值,結(jié)果有好有壞。例如,圖5b展示了由簡單RC濾波所得到的指數(shù)波形的效果。這里,EMI其實(shí)變得更嚴(yán)重。原因是,在任何變換開始時(shí),指數(shù)波形都形成一個(gè)尖角,即使任何變換的結(jié)尾是光滑的。但在變換終點(diǎn),侵損已經(jīng)發(fā)生。

圖5c展示了當(dāng)所有的尖角被從接口波形中除去,頻譜鉗限性能大大改善了。除去尖角是波形整形的首要目標(biāo),所以,有時(shí)也將其稱為波形曲率限制。
  

如何控制高速數(shù)字接口的EMI問題

(a)
 

如何控制高速數(shù)字接口的EMI問題

(b)
 

如何控制高速數(shù)字接口的EMI問題

(c)

圖5:具有不同波形形狀的信號(hào)變換的EMI信號(hào)的頻譜變化:a)線性變換,b)指數(shù)變換,和c)濾波后的波形。指數(shù)變換實(shí)際上抑制EMI的能力最差。



技術(shù)組合拳

所有的EMI管理技術(shù)始于最大化物理隔離。除隔離外,取決于接口標(biāo)準(zhǔn)化委員會(huì)遇到的具體問題,會(huì)采用不同的技術(shù)。下面介紹來自于公布的MIPI標(biāo)準(zhǔn)的兩個(gè)例子。

MIPI聯(lián)盟的M-PHY規(guī)范是個(gè)使用低幅值差分信號(hào)的HSS鏈接。由于數(shù)據(jù)傳輸速率高于許多蜂窩和其它無線通信頻率,所以組合使用了數(shù)據(jù)速率選擇、壓擺率控制以及漂移邊界等方法以降低出現(xiàn)在內(nèi)部(包括可能的單片)射頻接收器輸入端的EMI。圖6是體現(xiàn)這種改善的一個(gè)例子。


如何控制高速數(shù)字接口的EMI問題

圖6:MIPI聯(lián)盟的M-PHY接口組合了漂移邊界與壓擺率控制技術(shù),以盡力降低高頻EMI。將該結(jié)果與圖4b中的頻譜進(jìn)行比較。



MIPI聯(lián)盟的射頻前端(RFFE)接口有不同的問題,且采用不同的技術(shù)管理EMI。RFFE應(yīng)用需要大幅值的單端信號(hào),即便該接口工作時(shí)緊鄰敏感的射頻輸入。這里采用的技術(shù)組合首先采用與應(yīng)用需求一致的最低數(shù)據(jù)傳輸速率。然后,我們對(duì)接口波形實(shí)施曲率控制,以確保任何EMI都被限定于低于本地射頻的工作頻率。圖7是演示其作用效果的一個(gè)例子。



如何控制高速數(shù)字接口的EMI問題

(a)

如何控制高速數(shù)字接口的EMI問題

(b)

圖7:MIPI聯(lián)盟的RFFE接口組合了數(shù)據(jù)速率選擇和波形整形技術(shù),以將不需要的射頻信號(hào)頻帶控制在主要無線通信頻帶以下:(頂部)26MHz數(shù)據(jù)速率已經(jīng)使得大部分信號(hào)能量位于低頻,而(底部)在每一個(gè)轉(zhuǎn)換的開始和結(jié)束都另實(shí)施了少量的曲率控制,顯著改善了EMI抑制性能。



總結(jié)

設(shè)計(jì)的EMI管理是實(shí)現(xiàn)移動(dòng)設(shè)備內(nèi)接口和接收器相互透明度的一個(gè)關(guān)鍵組成部分。定義這些接口的規(guī)范委員會(huì),如MIPI聯(lián)盟,最好地掌控著這種能力。

由在強(qiáng)調(diào)相互透明度的M-PHY和RFFE接口規(guī)范的制定中所獲經(jīng)驗(yàn)表明,對(duì)降低EMI來說,有的技術(shù)很有效、有的不那么有效。目前為止,最有效的技術(shù)是良好的物理隔離。其次是限定差分信號(hào)允許的漂移,以及避免采用可導(dǎo)致指數(shù)接口波形的RC濾波。對(duì)減小EMI來說,使用波形整形技術(shù)以減少接口波形上的尖角是特別有效的方法。

選擇數(shù)據(jù)速率是不需要濾波的一種技術(shù)。由于來自數(shù)字波形的EMI在此數(shù)據(jù)速率和其所有的整數(shù)倍速率都有頻譜零值,將這些零值放置在所關(guān)注頻帶的附近也十分有效。最后但當(dāng)然不是不重要的,是降低接口波形的幅值。這種技術(shù)對(duì)EMI的影響微不足道。


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:

汽車主動(dòng)安全系統(tǒng)中的傳感器技術(shù)

降壓電源轉(zhuǎn)換器設(shè)計(jì)中的EMI和效率考慮因素

面向高功率密度應(yīng)用的I類陶瓷技術(shù)

單片機(jī)最小系統(tǒng)詳解,你要知道的都在這里了

使用電源濾波器的常見錯(cuò)誤

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉