模擬電源和數(shù)字電源
發(fā)布時(shí)間:2020-08-03 責(zé)任編輯:wenwei
【導(dǎo)讀】為使高速模數(shù)轉(zhuǎn)換器發(fā)揮 性能,必須為其提供干凈的直流電源。高噪聲電源會(huì)導(dǎo)致信噪比(SNR)下降和/或ADC輸出中出現(xiàn)不良的雜散成分。本文將介紹有關(guān)ADC電源域和靈敏度的背景知識(shí),并討論為高速ADC供電的基本原則。
模擬電源和數(shù)字電源
當(dāng)今的大部分高速模數(shù)轉(zhuǎn)換器至少都有兩個(gè)電源域:模擬電源(AVDD)和數(shù)字與輸出驅(qū)動(dòng)器電源(DRVDD)。一些轉(zhuǎn)換器還有一個(gè)附加模擬電源,通常應(yīng)作為本文所討論的額外AVDD電源來(lái)處理。轉(zhuǎn)換器的模擬電源和數(shù)字電源是分離的,以防數(shù)字開(kāi)關(guān)噪聲(特別是輸出驅(qū)動(dòng)器產(chǎn)生的噪聲)干擾器件模擬端的模擬采樣和處理。根據(jù)采樣信號(hào)的不同,此數(shù)字輸出開(kāi)關(guān)噪聲可能包含顯著的頻率成分,如果此噪聲返回器件的模擬或時(shí)鐘輸入端,或者通過(guò)電源返回芯片的模擬端,則噪聲和雜散性能會(huì)很容易受其影響而降低。
對(duì)于大多數(shù)高速模數(shù)轉(zhuǎn)換器,建議將兩個(gè)獨(dú)立的電源分別用于AVDD和DRVDD。這兩個(gè)電源之間應(yīng)有充分的隔離,防止DRVDD電源的任何數(shù)字開(kāi)關(guān)噪聲到達(dá)轉(zhuǎn)換器的AVDD電源。AVDD和DRVDD電源常常采用各自的調(diào)節(jié)器,然而,如果在這兩個(gè)電源之間實(shí)現(xiàn)了充分的濾波,則采用一個(gè)調(diào)節(jié)器通常也能獲得足夠好的性能。
ADC電源靈敏度——PSRR
確定高速ADC對(duì)電源噪聲的靈敏度的一個(gè)方法,是將一個(gè)已知頻率施加于轉(zhuǎn)換器的電源軌,并測(cè)量轉(zhuǎn)換器輸出頻譜中出現(xiàn)的信號(hào)音,從而考察其電源抑制性能。輸入信號(hào)與輸出頻譜中出現(xiàn)的信號(hào)的相對(duì)功率即為轉(zhuǎn)換器在給定頻率下的電源抑制比(PSRR)。下圖顯示了典型高速ADC的PSRR與頻率的關(guān)系。此圖中數(shù)據(jù)的測(cè)量條件是將器件安裝于配有旁路電容的評(píng)估板上,這種方法能夠顯示典型應(yīng)用中器件如何響應(yīng)電源噪聲。注意在這種情況下,轉(zhuǎn)換器的PSRR在低頻時(shí)相對(duì)高得多,當(dāng)頻率高于約10MHz時(shí)會(huì)顯著下降。
利用此PSRR信息,設(shè)計(jì)人員可以確定為了防止噪聲損害轉(zhuǎn)換器的性能,電源所容許的紋波水平。例如,如果一個(gè)電源在500kHz時(shí)具有5mVp-p的紋波,則從下面的PSRR圖可知,轉(zhuǎn)換器在此頻率提供大約58dB的抑制。轉(zhuǎn)換器的滿(mǎn)量程為2Vp-p,因此原始5mV信號(hào)比輸入滿(mǎn)量程低52dB。此信號(hào)將進(jìn)一步衰減58dB,從而比轉(zhuǎn)換器的滿(mǎn)量程功率低110dB。這樣,設(shè)計(jì)人員就能使用轉(zhuǎn)換器的PSRR數(shù)據(jù)來(lái)確定在給定頻率下轉(zhuǎn)換器電源的容許紋波。如果轉(zhuǎn)換器的電源在已知頻率具有紋波,例如來(lái)自上游開(kāi)關(guān)轉(zhuǎn)換器,則可以利用該方法確定將此噪聲衰減至容許水平所需的額外濾波。
上述分析假設(shè)給定電源上僅出現(xiàn)一個(gè)頻率。事實(shí)上,根據(jù)電源獲得方式的不同以及該電源供電對(duì)象的不同,電源上的噪聲可能具有額外頻率成分。如果是這種情況,設(shè)計(jì)人員必須確保為電源提供充分的濾波來(lái)衰減此噪聲。請(qǐng)注意,由于ADC輸入的寬帶特性,在其它奈奎斯特頻率區(qū)中,處在ADC輸入的目標(biāo)頻帶之外的噪聲可能會(huì)進(jìn)入目標(biāo)頻帶。
關(guān)于線性調(diào)節(jié)器的討論
傳統(tǒng)上使用線性調(diào)節(jié)器來(lái)為轉(zhuǎn)換器的AVDD和DRVDD軌提供干凈的電源。低壓差線性調(diào)節(jié)器能夠出色地抑制約1MHz以下的低頻噪聲。典型LDO的控制環(huán)路帶寬不超過(guò)此頻率,因此更高頻率的噪聲會(huì)幾乎毫無(wú)衰減地通過(guò)調(diào)節(jié)器。對(duì)于此頻率以上的噪聲,必須在LDO之后通過(guò)額外濾波對(duì)其進(jìn)行衰減,防止此噪聲到達(dá)ADC。通常,結(jié)合使用鐵氧體磁珠、大去耦電容和局部電源去耦,即足以衰減任何通過(guò)線性調(diào)節(jié)器的高頻噪聲。設(shè)計(jì)電源濾波器時(shí)必須注意,如果使用串聯(lián)感性元件,應(yīng)確保上電和掉電時(shí)的感應(yīng)電勢(shì)不會(huì)達(dá)到足以損壞轉(zhuǎn)換器的水平。
圖1:典型ADC電源抑制比與頻率的關(guān)系
此外,鑒于LDO的上游常常還會(huì)有一個(gè)開(kāi)關(guān)轉(zhuǎn)換器,設(shè)計(jì)人員必須確保LDO和濾波器電路能夠充分抑制此開(kāi)關(guān)轉(zhuǎn)換器的頻率?,F(xiàn)代開(kāi)關(guān)轉(zhuǎn)換器的開(kāi)關(guān)頻率越來(lái)越高,可能高于典型LDO的環(huán)路帶寬。來(lái)自這些高頻開(kāi)關(guān)轉(zhuǎn)換器的噪聲很容易通過(guò)LDO,必須利用下游濾波器對(duì)其進(jìn)行衰減。
雖然線性調(diào)節(jié)器能夠很好地為ADC提供干凈的電源,但效率不高是其主要缺點(diǎn)。根據(jù)提供給線性調(diào)節(jié)器輸入端的電壓的不同,LDO的效率可能非常低。提供一個(gè)略高于LDO壓差的電壓雖然可以提高效率,但這經(jīng)常需要增加額外的電源級(jí),導(dǎo)致電源設(shè)計(jì)的成本和復(fù)雜度隨之增加。
關(guān)于開(kāi)關(guān)調(diào)節(jié)器的討論
傳統(tǒng)上,開(kāi)關(guān)調(diào)節(jié)器不宜用于直接為ADC供電。然而,開(kāi)關(guān)調(diào)節(jié)器技術(shù)已今非昔比,當(dāng)與后置濾波、精心的設(shè)計(jì)和布局布線做法相結(jié)合,開(kāi)關(guān)調(diào)節(jié)器可以用作許多高速模數(shù)轉(zhuǎn)換器的高效率電源解決方案。如圖2所示,開(kāi)關(guān)調(diào)節(jié)器的效率可達(dá)95%,相比于LDO,系統(tǒng)功耗顯著降低。對(duì)于一個(gè)功耗為780mW的1.8V單電源ADC,如果使用開(kāi)關(guān)調(diào)節(jié)器電源,整體系統(tǒng)功耗可降低640mW或更多。此外,開(kāi)關(guān)電源設(shè)計(jì)消除了線性級(jí)這一熱源,PCB的總體熱量得以降低,因而對(duì)風(fēng)扇和散熱器等額外冷卻措施的需求會(huì)減少。
圖2:LDO為ADC供電,包括濾波
不過(guò),開(kāi)關(guān)調(diào)節(jié)器確實(shí)會(huì)產(chǎn)生噪聲,必須通過(guò)精心的設(shè)計(jì)和布局布線予以控制。開(kāi)關(guān)電源主要有兩類(lèi)噪聲:開(kāi)關(guān)紋波和高頻噪聲。對(duì)于恒頻開(kāi)關(guān)調(diào)節(jié)器,開(kāi)關(guān)紋波會(huì)在開(kāi)關(guān)頻率及其倍數(shù)頻率產(chǎn)生能量。高頻噪聲由轉(zhuǎn)換器中的電壓和電流快速跳變而產(chǎn)生。1-5ns的典型上升時(shí)間可以在70-350MHz區(qū)間內(nèi)產(chǎn)生能量。對(duì)這兩個(gè)噪聲源均必須進(jìn)行充分濾波,以免其干擾轉(zhuǎn)換器的工作,降低轉(zhuǎn)換器的性能。這可能需要使用多級(jí)LC濾波器,以降低紋波并衰減噪聲。為保持直流調(diào)節(jié)能力,開(kāi)關(guān)電源控制環(huán)路可以在輸出濾波器的兩級(jí)附近閉合。為保持穩(wěn)定性,環(huán)路穿越頻率必須較低。ADC給電源帶來(lái)的負(fù)載特性基本上是一個(gè)與時(shí)鐘頻率成正比的直流負(fù)載。由于該負(fù)載是恒定的,開(kāi)關(guān)調(diào)節(jié)器的瞬態(tài)響應(yīng)相對(duì)不重要,因此低環(huán)路穿越頻率在這種情況下是可以接受的。對(duì)調(diào)節(jié)器進(jìn)行外部補(bǔ)償可以更輕松實(shí)現(xiàn)這一目標(biāo)。
對(duì)輸出電源電壓上的噪聲進(jìn)行充分濾波至關(guān)重要,但設(shè)計(jì)人員也必須盡量減小從電源所含磁性元件(電感)到與ADC時(shí)鐘或信號(hào)路徑相關(guān)的巴倫或變壓器之間的磁場(chǎng)或電場(chǎng)耦合。將電源電感放在PCB上的另一端并遠(yuǎn)離關(guān)鍵的ADC時(shí)鐘和輸入相關(guān)電路,有助于減小這種耦合。
電源去耦
盡管高速ADC給電源帶來(lái)的總負(fù)載是穩(wěn)定的,但需要電流以ADC采樣速率和此頻率的諧波快速跳變。由于和走線的電感會(huì)限制電源能夠迅速提供的電流量,因此ADC所需的高頻電流是由板電源去耦電容提供的。為高速ADC供電時(shí),應(yīng)同時(shí)采用大的電源去耦電容和局部(ADC引腳處)去耦電容。大去耦電容存儲(chǔ)電荷以對(duì)電源層和局部去耦電容充電,局部去耦電容則提供ADC所需的高頻電流。有效的去耦還能將高頻電源瞬變限制在距離產(chǎn)生瞬變的IC非常近的區(qū)域,從而使電路板上產(chǎn)生的電磁輻射()降至 。
一般而言,應(yīng)為每個(gè)ADC電源軌至少提供一個(gè)大去耦電容。這些電容應(yīng)當(dāng)是10uF至22uF范圍內(nèi)的低ESR陶瓷或鉭電容。對(duì)于局部去耦,一般建議為每個(gè)電源引腳提供一個(gè)去耦電容。局部去耦電容應(yīng)當(dāng)是0.01uF至0.1uF范圍內(nèi)的低ESR陶瓷電容,并且應(yīng)盡可能靠近ADC電源引腳放置。這些電容應(yīng)具有通向電源層的過(guò)孔,并且過(guò)孔應(yīng)非??拷麬DC電源引腳。如果ADC是從PCB上緊密耦合的電源層獲得電源,則局部去耦也可以通過(guò)層與層之間的電容效應(yīng)實(shí)現(xiàn)。如果這些層相對(duì)較大,并且間隔小于5密爾(mil),則層間電容可提供非常有效的去耦作用。層間電容與局部旁路電容共同提供ADC所需的高頻電流。
接地
ADC接地是電源方案的重要一環(huán)。當(dāng)前許多ADC都采用LFCSP封裝,封裝底部有一個(gè)接地金屬塊。此金屬塊用于為器件散熱;在許多情況下,此接地金屬塊是器件 的接地連接。必須將此接地金屬塊焊接到上的接地焊盤(pán),此焊盤(pán)有多個(gè)過(guò)孔通向接地層。
ADC地上的噪聲也會(huì)影響其性能。當(dāng)數(shù)字回路電流流經(jīng)ADC所在區(qū)域時(shí),通常會(huì)產(chǎn)生接地噪聲。設(shè)計(jì)人員應(yīng)當(dāng)采取措施,確保高噪聲地電流不會(huì)流經(jīng)ADC附近。一般建議使用連續(xù)層,但為了隔離高噪聲地電流,可能需要使用非連續(xù)層。
結(jié)論
ADC的電源實(shí)現(xiàn)方案可能會(huì)對(duì)器件的性能產(chǎn)生重大影響。按照本文提出的指導(dǎo)原則進(jìn)行設(shè)計(jì),可以實(shí)現(xiàn)有效的ADC電源。尋找特定ADC的電源參考資料時(shí),首先應(yīng)查看該ADC的評(píng)估板。ADI公司的所有ADC都有附帶電源的評(píng)估板。研究評(píng)估板電源的結(jié)構(gòu)以及它所采用的去耦和布局,是開(kāi)展ADC電源設(shè)計(jì)的起點(diǎn)。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿(mǎn)足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
- 兩張圖說(shuō)清楚共射極放大器為什么需要發(fā)射極電阻
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Toshiba多樣化電子元器件和半導(dǎo)體產(chǎn)品
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開(kāi)關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車(chē)
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器