圖1 給出了一個(gè)SMPS 降壓轉(zhuǎn)換器的電路實(shí)例,轉(zhuǎn)換效率可以達(dá)到97%,即使在輕載時(shí)也能保持較高效率。采用什么秘訣才能達(dá)到如此高的效率?我們最好從了解SMPS 損耗的公共問(wèn)題開(kāi)始,開(kāi)關(guān)電源的損耗大部分來(lái)自開(kāi)關(guān)器件(MOSFET 和二極管),另外小部分損耗來(lái)自電感和電容。但是,如果使用非常廉價(jià)的電感和電容(具有較高電阻),將會(huì)導(dǎo)致?lián)p耗明顯增大。選擇IC 時(shí),需要考慮控制器的架構(gòu)和內(nèi)部元件,以期獲得高效指標(biāo)。例如,圖1 采用了多種方法來(lái)降低損耗,其中包括:同步整流,芯片內(nèi)部集成低導(dǎo)通電阻的MOSFET,低靜態(tài)電流和跳脈沖控制模式。我們將在本文展開(kāi)討論這些措施帶來(lái)的好處。
開(kāi)關(guān)電源各處損耗探究
發(fā)布時(shí)間:2018-10-12 責(zé)任編輯:wenwei
【導(dǎo)讀】能量轉(zhuǎn)換系統(tǒng)必定存在能耗,雖然實(shí)際應(yīng)用中無(wú)法獲得100%的轉(zhuǎn)換效率,但是,一個(gè)高質(zhì)量的電源效率可以達(dá)到非常高的水平,效率接近95%。絕大多數(shù)電源IC 的工作效率可以在特定的工作條件下測(cè)得,數(shù)據(jù)資料中給出了這些參數(shù)。一般廠商會(huì)給出實(shí)際測(cè)量的結(jié)果,但我們只能對(duì)我們自己的數(shù)據(jù)擔(dān)保。
圖1 給出了一個(gè)SMPS 降壓轉(zhuǎn)換器的電路實(shí)例,轉(zhuǎn)換效率可以達(dá)到97%,即使在輕載時(shí)也能保持較高效率。采用什么秘訣才能達(dá)到如此高的效率?我們最好從了解SMPS 損耗的公共問(wèn)題開(kāi)始,開(kāi)關(guān)電源的損耗大部分來(lái)自開(kāi)關(guān)器件(MOSFET 和二極管),另外小部分損耗來(lái)自電感和電容。但是,如果使用非常廉價(jià)的電感和電容(具有較高電阻),將會(huì)導(dǎo)致?lián)p耗明顯增大。選擇IC 時(shí),需要考慮控制器的架構(gòu)和內(nèi)部元件,以期獲得高效指標(biāo)。例如,圖1 采用了多種方法來(lái)降低損耗,其中包括:同步整流,芯片內(nèi)部集成低導(dǎo)通電阻的MOSFET,低靜態(tài)電流和跳脈沖控制模式。我們將在本文展開(kāi)討論這些措施帶來(lái)的好處。
圖1. 降壓轉(zhuǎn)換器集成了低導(dǎo)通電阻的MOSFET,采用同步整流,效率曲線如圖所示。
降壓型SMPS
損耗是任何SMPS 架構(gòu)都面臨的問(wèn)題,我們?cè)诖艘詧D2 所示降壓型(或buck)轉(zhuǎn)換器為例進(jìn)行討論,圖中標(biāo)明各點(diǎn)的開(kāi)關(guān)波形,用于后續(xù)計(jì)算。
降壓轉(zhuǎn)換器的主要功能是把一個(gè)較高的直流輸入電壓轉(zhuǎn)換成較低的直流輸出電壓。為了達(dá)到這個(gè)要求,MOSFET 以固定頻率(fS),在脈寬調(diào)制信號(hào)(PWM)的控制下進(jìn)行開(kāi)、關(guān)操作。當(dāng)MOSFET 導(dǎo)通時(shí),輸入電壓給電感和電容(L 和COUT)充電,通過(guò)它們把能量傳遞給負(fù)載。在此期間,電感電流線性上升,電流回路如圖2 中的回路1 所示。
當(dāng)MOSFET 斷開(kāi)時(shí),輸入電壓斷開(kāi)與電感的連接,電感和輸出電容為負(fù)載供電。電感電流線性下降,電流流過(guò)二極管,電流回路如圖中的環(huán)路2 所示。MOSFET 的導(dǎo)通時(shí)間定義為PWM 信號(hào)的占空比(D)。D 把每個(gè)開(kāi)關(guān)周期分成[D × tS]和[(1 - D) × tS]兩部分,它們分別對(duì)應(yīng)于MOSFET 的導(dǎo)通時(shí)間(環(huán)路1)和二極管的導(dǎo)通時(shí)間(環(huán)路2)。所有SMPS 拓?fù)?降壓、反相等)都采用這種方式劃分開(kāi)關(guān)周期,實(shí)現(xiàn)電壓轉(zhuǎn)換。
對(duì)于降壓轉(zhuǎn)換電路,較大的占空比將向負(fù)載傳輸較多的能量,平均輸出電壓增加。相反,占空比較低時(shí),平均輸出電壓也會(huì)降低。根據(jù)這個(gè)關(guān)系,可以得到以下理想情況下(不考慮二極管或MOSFET 的壓降)降壓型SMPS 的轉(zhuǎn)換公式:
VOUT= D × VIN
IIN= D × IOUT
需要注意的是,任何SMPS 在一個(gè)開(kāi)關(guān)周期內(nèi)處于某個(gè)狀態(tài)的時(shí)間越長(zhǎng),那么它在這個(gè)狀態(tài)所造成的損耗也越大。對(duì)于降壓型轉(zhuǎn)換器,D 越低(相應(yīng)的VOUT 越低),回路2 產(chǎn)生的損耗也大。
開(kāi)關(guān)器件的損耗 MOSFET 傳導(dǎo)損耗
圖2 (以及其它絕大多數(shù)DC-DC 轉(zhuǎn)換器拓?fù)?中的MOSFET 和二極管是造成功耗的主要因素。相關(guān)損耗主要包括兩部分:傳導(dǎo)損耗和開(kāi)關(guān)損耗。
MOSFET 和二極管是開(kāi)關(guān)元件,導(dǎo)通時(shí)電流流過(guò)回路。器件導(dǎo)通時(shí),傳導(dǎo)損耗分別由MOSFET 的導(dǎo)通電阻(RDS(ON))和二極管的正向?qū)妷簺Q定。
MOSFET 的傳導(dǎo)損耗(PCOND(MOSFET))近似等于導(dǎo)通電阻RDS(ON)、占空比(D)和導(dǎo)通時(shí)MOSFET 的平均電流(IMOSFET(AVG))的乘積。
PCOND(MOSFET) (使用平均電流) = IMOSFET(AVG)² × RDS(ON) × D
上式給出了SMPS 中MOSFET 傳導(dǎo)損耗的近似值,但它只作為電路損耗的估算值,因?yàn)殡娏骶€性上升時(shí)所產(chǎn)生的功耗大于由平均電流計(jì)算得到的功耗。對(duì)于“峰值”電流,更準(zhǔn)確的計(jì)算方法是對(duì)電流峰值和谷值(圖3 中的IV 和IP)之間的電流波形的平方進(jìn)行積分得到估算值。
圖3. 典型的降壓型轉(zhuǎn)換器的MOSFET 電流波形,用于估算MOSFET 的傳導(dǎo)損耗。
下式給出了更準(zhǔn)確的估算損耗的方法,利用IP 和IV 之間電流波形I²的積分替代簡(jiǎn)單的I²項(xiàng)。
PCOND(MOSFET) = [(IP3 - IV3)/3] × RDS(ON) × D
= [(IP3 - IV3)/3] × RDS(ON) × VOUT/VIN
式中,IP 和IV 分別對(duì)應(yīng)于電流波形的峰值和谷值,如圖3 所示。MOSFET 電流從IV 線性上升到IP,例如:如果IV 為0.25A,IP 為1.75A,RDS(ON)為0.1Ω,VOUT 為VIN/2 (D = 0.5),基于平均電流(1A)的計(jì)算結(jié)果為:
PCOND(MOSFET) (使用平均電流) = 12 × 0.1 × 0.5 = 0.050W
利用波形積分進(jìn)行更準(zhǔn)確的計(jì)算:
PCOND(MOSFET) (使用電流波形積分進(jìn)行計(jì)算) = [(1.753 - 0.253)/3] × 0.1 × 0.5 = 0.089W
或近似為78%,高于按照平均電流計(jì)算得到的結(jié)果。對(duì)于峰均比較小的電流波形,兩種計(jì)算結(jié)果的差別很小,利用平均電流計(jì)算即可滿足要求。
二極管傳導(dǎo)損耗
MOSFET 的傳導(dǎo)損耗與RDS(ON)成正比,二極管的傳導(dǎo)損耗則在很大程度上取決于正向?qū)妷?VF)。二極管通常比MOSFET 損耗更大,二極管損耗與正向電流、VF 和導(dǎo)通時(shí)間成正比。由于MOSFET 斷開(kāi)時(shí)二極管導(dǎo)通,二極管的傳導(dǎo)損耗(PCOND(DIODE))近似為:
PCOND(DIODE) = IDIODE(ON) × VF × (1 - D)
式中,IDIODE(ON)為二極管導(dǎo)通期間的平均電流。圖2 所示,二極管導(dǎo)通期間的平均電流為IOUT,因此,對(duì)于降壓型轉(zhuǎn)換器,PCOND(DIODE)可以按照下式估算:
PCOND(DIODE) = IOUT × VF × (1 - VOUT/VIN)
與MOSFET 功耗計(jì)算不同,采用平均電流即可得到比較準(zhǔn)確的功耗計(jì)算結(jié)果,因?yàn)槎O管損耗與I 成正比,而不是I2。
顯然,MOSFET 或二極管的導(dǎo)通時(shí)間越長(zhǎng),傳導(dǎo)損耗也越大。對(duì)于降壓型轉(zhuǎn)換器,輸出電壓越低,二極管產(chǎn)生的功耗也越大,因?yàn)樗幱趯?dǎo)通狀態(tài)的時(shí)間越長(zhǎng)。
開(kāi)關(guān)動(dòng)態(tài)損耗
由于開(kāi)關(guān)損耗是由開(kāi)關(guān)的非理想狀態(tài)引起的,很難估算MOSFET 和二極管的開(kāi)關(guān)損耗,器件從完全導(dǎo)通到完全關(guān)閉或從完全關(guān)閉到完全導(dǎo)通需要一定時(shí)間,在這個(gè)過(guò)程中會(huì)產(chǎn)生功率損耗。圖4 所示MOSFET 的漏源電壓(VDS)和漏源電流(IDS)的關(guān)系圖可以很好地解釋MOSFET 在過(guò)渡過(guò)程中的開(kāi)關(guān)損耗,從上半部分波形可以看出,tSW(ON)和tSW(OFF)期間電壓和電流發(fā)生瞬變,MOSFET 的電容進(jìn)行充電、放電。
圖4 所示,VDS 降到最終導(dǎo)通狀態(tài)(= ID × RDS(ON))之前,滿負(fù)荷電流(ID)流過(guò)MOSFET。相反,關(guān)斷時(shí),VDS 在MOSFET 電流下降到零值之前逐漸上升到關(guān)斷狀態(tài)的最終值。開(kāi)關(guān)過(guò)程中,電壓和電流的交疊部分即為造成開(kāi)關(guān)損耗的來(lái)源,從圖4 可以清楚地看到這一點(diǎn)。
圖4. 開(kāi)關(guān)損耗發(fā)生在MOSFET 通、斷期間的過(guò)渡過(guò)程
開(kāi)關(guān)損耗隨著SMPS 頻率的升高而增大,這一點(diǎn)很容易理解,隨著開(kāi)關(guān)頻率提高(周期縮短),開(kāi)關(guān)過(guò)渡時(shí)間所占比例增大,從而增大開(kāi)關(guān)損耗。開(kāi)關(guān)轉(zhuǎn)換過(guò)程中,開(kāi)關(guān)時(shí)間是占空比的二十分之一對(duì)于效率的影響要遠(yuǎn)遠(yuǎn)小于開(kāi)關(guān)時(shí)間為占空比的十分之一的情況。由于開(kāi)關(guān)損耗和頻率有很大的關(guān)系,工作在高頻時(shí),開(kāi)關(guān)損耗將成為主要的損耗因素。MOSFET 的開(kāi)關(guān)損耗(PSW(MOSFET))可以按照?qǐng)D3 所示三角波進(jìn)行估算,公式如下:
PSW(MOSFET) = 0.5 × VD × ID × (tSW(ON) + tSW(OFF)) × fS
其中,VD 為MOSFET 關(guān)斷期間的漏源電壓,ID 是MOSFET 導(dǎo)通期間的溝道電流,tSW(ON)和tSW(OFF)是導(dǎo)通和關(guān)斷時(shí)間。對(duì)于降壓電路轉(zhuǎn)換,VIN 是MOSFET 關(guān)斷時(shí)的電壓,導(dǎo)通時(shí)的電流為IOUT。
為了驗(yàn)證MOSFET 的開(kāi)關(guān)損耗和傳導(dǎo)損耗,圖5 給出了降壓轉(zhuǎn)換器中集成高端MOSFET 的典型波形:VDS和IDS。電路參數(shù)為:VIN = 10V、VOUT = 3.3V、IOUT = 500mA、RDS(ON) = 0.1Ω、fS = 1MHz、開(kāi)關(guān)瞬變時(shí)間(tON + tOFF)總計(jì)為38ns。
在圖5 可以看出,開(kāi)關(guān)變化不是瞬間完成的,電流和電壓波形交疊部分導(dǎo)致功率損耗。MOSFET“導(dǎo)通”時(shí)(圖2),流過(guò)電感的電流IDS 線性上升,與導(dǎo)通邊沿相比,斷開(kāi)時(shí)的開(kāi)關(guān)損耗更大。
利用上述近似計(jì)算法,MOSFET 的平均損耗可以由下式計(jì)算:
PT(MOSFET) = PCOND(MOSFET) + PSW(MOSFET)
= [(I13 - I03)/3] × RDS(ON) × VOUT/VIN + 0.5 × VIN × IOUT × (tSW(ON) + tSW(OFF)) × fS
= [(13 - 03)/3] × 0.1 × 3.3/10 + 0.5 × 10 × 0.5 × (38 × 10-9) × 1 × 106
= 0.011 + 0.095 = 106mW
這一結(jié)果與圖5 下方曲線測(cè)量得到的117.4mW 接近,注意:這種情況下,fS 足夠高,PSW(MOSFET)是功耗的主要因素。
圖5. 降壓轉(zhuǎn)換器高端MOSFET 的典型開(kāi)關(guān)周期,輸入10V、輸出3.3V (輸出電流500mA)。開(kāi)關(guān)頻率為1MHz,開(kāi)關(guān)轉(zhuǎn)換時(shí)間是38ns。
與MOSFET 相同,二極管也存在開(kāi)關(guān)損耗。這個(gè)損耗很大程度上取決于二極管的反向恢復(fù)時(shí)間(tRR),二極管開(kāi)關(guān)損耗發(fā)生在二極管從正向?qū)ǖ椒聪蚪刂沟霓D(zhuǎn)換過(guò)程。
當(dāng)反向電壓加在二級(jí)管兩端時(shí),正向?qū)娏髟诙O管上產(chǎn)生的累積電荷需要釋放,產(chǎn)生反向電流尖峰(IRR(PEAK)),極性與正向?qū)娏飨喾矗瑥亩斐蒝 × I 功率損耗,因?yàn)榉聪蚧謴?fù)期內(nèi),反向電壓和反向電流同時(shí)存在于二極管。圖6 給出了二極管在反向恢復(fù)期間的PN 結(jié)示意圖。
圖6. 二極管結(jié)反偏時(shí),需要釋放正向?qū)ㄆ陂g的累積電荷,產(chǎn)生峰值電流(IRR(PEAK))。
了解了二極管的反向恢復(fù)特性,可以由下式估算二極管的開(kāi)關(guān)損耗(PSW(DIODE)):
PSW(DIODE) = 0.5 × VREVERSE × IRR(PEAK) × tRR2 × fS
其中,VREVERSE 是二極管的反向偏置電壓,IRR(PEAK)是反向恢復(fù)電流的峰值,tRR2 是從反向電流峰值IRR 到恢復(fù)電流為正的時(shí)間。對(duì)于降壓電路,當(dāng)MOSFET 導(dǎo)通的時(shí)候,VIN 為MOSFET 導(dǎo)通時(shí)二極管的反向偏置電壓。
為了驗(yàn)證二極管損耗計(jì)算公式,圖7 顯示了典型的降壓轉(zhuǎn)換器中PN 結(jié)的開(kāi)關(guān)波形,VIN = 10V、VOUT =3.3V,測(cè)得IRR(PEAK) = 250mA、IOUT = 500mA、fS = 1MHz、 tRR2 = 28ns、VF = 0.9V。利用這些數(shù)值可以得到:
該結(jié)果接近于圖7 所示測(cè)量結(jié)果358.7mW。考慮到較大的VF和較長(zhǎng)的二極管導(dǎo)通周期,tRR 時(shí)間非常短,開(kāi)關(guān)損耗(PSW(DIODE))在二極管損耗中占主導(dǎo)地位。
圖7. 降壓型轉(zhuǎn)換器中PN 結(jié)開(kāi)關(guān)二極管的開(kāi)關(guān)波形,從10V 輸入降至3.3V 輸出,輸出電流為500mA。其它參數(shù)包括:1MHz 的fS,tRR2 為28ns,VF = 0.9V。
提高效率
基于上述討論,通過(guò)哪些途徑可以降低電源的開(kāi)關(guān)損耗呢?直接途徑是:選擇低導(dǎo)通電阻RDS(ON)、可快速切換的MOSFET;選擇低導(dǎo)通壓降VF、可快速恢復(fù)的二極管。
直接影響MOSFET 導(dǎo)通電阻的因素有幾點(diǎn),通常增加芯片尺寸和漏源極擊穿電壓(VBR(DSS)),由于增加了器件中的半導(dǎo)體材料,有助于降低導(dǎo)通電阻RDS(ON)。另一方面,較大的MOSFET 會(huì)增大開(kāi)關(guān)損耗。因此,雖然大尺寸MOSFET 降低了RDS(ON),但也導(dǎo)致小器件可以避免的效率問(wèn)題。當(dāng)管芯溫度升高時(shí),MOSFET 導(dǎo)通電阻會(huì)相應(yīng)增大。必須保持較低的結(jié)溫,使導(dǎo)通電阻RDS(ON)不會(huì)過(guò)大。導(dǎo)通電阻RDS(ON)和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓以降低RDS(ON)損耗,但此時(shí)也會(huì)增大柵極驅(qū)動(dòng)損耗,需要平衡降低RDS(ON)的好處和增大柵極驅(qū)動(dòng)的缺陷。MOSFET 的開(kāi)關(guān)損耗與器件電容有關(guān),較大的電容需要較長(zhǎng)的充電時(shí)間,使開(kāi)關(guān)切換變緩,消耗更多能量。
米勒電容通常在MOSFET 數(shù)據(jù)資料中定義為反向傳輸電容(CRSS)或柵-漏電容(CGD),在開(kāi)關(guān)過(guò)程中對(duì)切換時(shí)間起決定作用。米勒電容的充電電荷用QGD 表示,為了快速切換MOSFET,要求盡可能低的米勒電容。一般來(lái)說(shuō),MOSFET 的電容和芯片尺寸成反比,因此必須折衷考慮開(kāi)關(guān)損耗和傳導(dǎo)損耗,同時(shí)也要謹(jǐn)慎選擇電路的開(kāi)關(guān)頻率。對(duì)于二極管,必須降低導(dǎo)通壓降,以降低由此產(chǎn)生的損耗。對(duì)于小尺寸、額定電壓較低的硅二極管,導(dǎo)通壓降一般在0.7V 到1.5V 之間。二極管的尺寸、工藝和耐壓等級(jí)都會(huì)影響導(dǎo)通壓降和反向恢復(fù)時(shí)間,大尺寸二極管通常具有較高的VF 和tRR,這會(huì)造成比較大的損耗。開(kāi)關(guān)二極管一般以速度劃分,分為“高速”、“甚高速”和“超高速”二極管,反向恢復(fù)時(shí)間隨著速度的提高而降低。快恢復(fù)二極管的tRR 為幾百納秒,而超高速快恢復(fù)二極管的tRR 為幾十納秒。低功耗應(yīng)用中,替代快恢復(fù)二極管的一種選擇是肖特基二極管,這種二極管的恢復(fù)時(shí)間幾乎可以忽略,反向恢復(fù)電壓VF 也只有快恢復(fù)二極管的一半(0.4V 至1V),但肖特基二極管的額定電壓和電流遠(yuǎn)遠(yuǎn)低于快恢復(fù)二極管,無(wú)法用于高壓或大功率應(yīng)用。另外,肖特基二極管與硅二極管相比具有較高的反向漏電流,但這些因素并不限制它在許多電源中的應(yīng)用。然而,在一些低壓應(yīng)用中,即便是具有較低壓降的肖特基二極管,所產(chǎn)生的傳導(dǎo)損耗也無(wú)法接受。比如,在輸出為1.5V 的電路中,即使使用0.5V 導(dǎo)通壓降VF 的肖特基二極管,二極管導(dǎo)通時(shí)也會(huì)產(chǎn)生33%的輸出電壓損耗!為了解決這一問(wèn)題,可以選擇低導(dǎo)通電阻RDS(ON)的MOSFET實(shí)現(xiàn)同步控制架構(gòu)。用MOSFET 取代二極管(對(duì)比圖1 和圖2 電路),它與電源的主MOSFET 同步工作,所以在交替切換的過(guò)程中,保證只有一個(gè)導(dǎo)通。導(dǎo)通的二極管由導(dǎo)通的MOSFET 所替代,二極管的高導(dǎo)通壓降VF 被轉(zhuǎn)換成MOSFET 的低導(dǎo)通壓降(MOSFET RDS(ON) × I),有效降低了二極管的傳導(dǎo)損耗。當(dāng)然,同步整流與二極管相比也只是降低了MOSFET 的壓降,另一方面,驅(qū)動(dòng)同步整流MOSFET 的功耗也不容忽略。IC數(shù)據(jù)資料 以上討論了影響開(kāi)關(guān)電源效率的兩個(gè)重要因素(MOSFET 和二極管)?;仡檲D 1 所示降壓電路,從數(shù)據(jù)資料中可以獲得影響控制器IC 工作效率的主要因素。首先,開(kāi)關(guān)元件集成在IC 內(nèi)部,可以節(jié)省空間、降低寄生損耗。其次,使用低導(dǎo)通電阻RDS(ON)的MOSFET,在小尺寸集成降壓IC (如MAX1556)中,其N(xiāo)MOS 和PMOS 的導(dǎo)通電阻可以達(dá)到0.27Ω (典型值)和0.19Ω (典型值)。最后,使用的同步整流電路。對(duì)于500mA 負(fù)載,占空比為50%的開(kāi)關(guān)電路,可以將低邊開(kāi)關(guān)(或二極管)的損耗從225mW (假設(shè)二極管壓降為 1V)降至 34mW。合理選擇SMPS IC 合理選擇 SMPS IC的封裝、控制架構(gòu),并進(jìn)行合理設(shè)計(jì),可以有效提高轉(zhuǎn)換效率。
集成功率開(kāi)關(guān)
功率開(kāi)關(guān)集成到IC 內(nèi)部時(shí)可以省去繁瑣的MOSFET 或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應(yīng),可以在一定程度上提高效率。根據(jù)功率等級(jí)和電壓限制,可以把MOSFET、二極管(或同步整流MOSFET)集成到芯片內(nèi)部。將開(kāi)關(guān)集成到芯片內(nèi)部的另一個(gè)好處是柵極驅(qū)動(dòng)電路的尺寸已經(jīng)針對(duì)片內(nèi)MOSFET 進(jìn)行了優(yōu)化,因而無(wú)需將時(shí)間浪費(fèi)在未知的分立MOSFET 上。
靜態(tài)電流
電池供電設(shè)備特別關(guān)注IC 規(guī)格中的靜態(tài)電流(IQ),它是維持電路工作所需的電流。重載情況下(大于十倍或百倍的靜態(tài)電流IQ),IQ 對(duì)效率的影響并不明顯,因?yàn)樨?fù)載電流遠(yuǎn)大于IQ,而隨著負(fù)載電流的降低,效率有下降的趨勢(shì),因?yàn)镮Q 對(duì)應(yīng)的功率占總功率的比例提高。這一點(diǎn)對(duì)于大多數(shù)時(shí)間處于休眠模式或其它低功耗模式的應(yīng)用尤其重要,許多消費(fèi)類(lèi)產(chǎn)品即使在“關(guān)閉”狀態(tài)下,也需要保持鍵盤(pán)掃描或其它功能的供電,這時(shí),無(wú)疑需要選擇具有極低IQ的電源。
電源架構(gòu)對(duì)效率的提高
SMPS 的控制架構(gòu)是影響開(kāi)關(guān)電源效率的關(guān)鍵因素之一。這一點(diǎn)我們已經(jīng)在同步整流架構(gòu)中討論過(guò),由于采用低導(dǎo)通電阻的MOSFET 取代了功耗較大的開(kāi)關(guān)二極管,可有效改善效率指標(biāo)。
另一種重要的控制架構(gòu)是針對(duì)輕載工作或較寬的負(fù)載范圍設(shè)計(jì)的,即跳脈沖模式,也稱(chēng)為脈沖頻率調(diào)制(PFM)。與單純的PWM 開(kāi)關(guān)操作(在重載和輕載時(shí)均采用固定的開(kāi)關(guān)頻率)不同,跳脈沖模式下轉(zhuǎn)換器工作在跳躍的開(kāi)關(guān)周期,可以節(jié)省不必要的開(kāi)關(guān)操作,進(jìn)而提高效率。
跳脈沖模式下,在一段較長(zhǎng)時(shí)間內(nèi)電感放電,將能量從電感傳遞給負(fù)載,以維持輸出電壓。當(dāng)然,隨著負(fù)載吸收電流,輸出電壓也會(huì)跌落。當(dāng)電壓跌落到設(shè)置門(mén)限時(shí),將開(kāi)啟一個(gè)新的開(kāi)關(guān)周期,為電感充電并補(bǔ)充輸出電壓。
需要注意的是跳脈沖模式會(huì)產(chǎn)生與負(fù)載相關(guān)的輸出噪聲,這些噪聲由于分布在不同頻率(與固定頻率的PWM 控制架構(gòu)不同),很難濾除。
先進(jìn)的SMPS IC 會(huì)合理利用兩者的優(yōu)勢(shì):重載時(shí)采用恒定PWM 頻率;輕載時(shí)采用跳脈沖模式以提高效率,圖1 所示IC 即提供了這樣的工作模式。
當(dāng)負(fù)載增加到一個(gè)較高的有效值時(shí),跳脈沖波形將轉(zhuǎn)換到固定PWM,在標(biāo)稱(chēng)負(fù)載下噪聲很容易濾除。在整個(gè)工作范圍內(nèi),器件根據(jù)需要選擇跳脈沖模式和PWM 模式,保持整體的最高效率(圖8)。
圖8 中的曲線D、E、F 所示效率曲線在固定PWM 模式下,輕載時(shí)效率較低,但在重載時(shí)能夠提供很高的轉(zhuǎn)換效率(高達(dá)98%)。如果設(shè)置在輕載下保持固定PWM 工作模式,IC 將不會(huì)按照負(fù)載情況更改工作模式。這種情況下能夠使紋波保持在固定頻率,但浪費(fèi)了一定功率。重載時(shí),維持PWM 開(kāi)關(guān)操作所需的額外功率很小,遠(yuǎn)遠(yuǎn)低于輸出功率。另一方面,跳脈沖“空閑”模式下的效率曲線(圖8 中的A、B、C)能夠在輕載時(shí)保持在較高水平,因?yàn)殚_(kāi)關(guān)只在負(fù)載需要時(shí)開(kāi)啟。對(duì)7V 輸入曲線,在1mA 負(fù)載的空閑模式下能夠獲得高于60%的效率。
圖8. 降壓轉(zhuǎn)換器在PWM 和空閑(跳脈沖)模式下效率曲線,注意:輕載時(shí),空閑模式下的效率高于PWM模式。
優(yōu)化SMPS
開(kāi)關(guān)電源因其高效率指標(biāo)得到廣泛應(yīng)用,但其效率仍然受SMPS 電路的一些固有損耗的制約。設(shè)計(jì)開(kāi)關(guān)電源時(shí),需要仔細(xì)研究造成SMPS 損耗的來(lái)源,合理選擇SMPS IC,從而充分利用器件的優(yōu)勢(shì),為了在保持盡可能低的電路成本,甚至不增加電路成本的前提下獲得高效的SMPS,工程師需要做出全面的選擇。
無(wú)源元件損耗
我們已經(jīng)了解MOSFET 和二極管會(huì)導(dǎo)致SMPS 損耗。采用高品質(zhì)的開(kāi)關(guān)器件能夠大大提升效率,但它們并不是唯一能夠優(yōu)化電源效率的元件。
圖1 詳細(xì)介紹了一個(gè)典型的降壓型轉(zhuǎn)換器IC 的基本電路。集成了兩個(gè)同步整流MOSFET,低RDS(ON) MOSFET,效率很高。這個(gè)電路中,開(kāi)關(guān)元件集成在IC 內(nèi)部,已經(jīng)為具體應(yīng)用預(yù)先選擇了元器件。然而,為了進(jìn)一步提高效率,設(shè)計(jì)人員還需關(guān)注無(wú)源元件—外部電感和電容,了解它們對(duì)功耗的影響。
電感功耗阻性損耗
電感功耗包括線圈損耗和磁芯損耗兩個(gè)基本因素,線圈損耗歸結(jié)于線圈的直流電阻(DCR),磁芯損耗歸結(jié)于電感的磁特性。
DCR 定義為以下電阻公式:
式中,ρ 為線圈材料的電阻系數(shù),l 為線圈長(zhǎng)度,A 為線圈橫截面積。
DCR 將隨著線圈長(zhǎng)度的增大而增大,隨著線圈橫截面積的增大而減小??梢岳迷撛瓌t判斷標(biāo)準(zhǔn)電感,確定所要求的不同電感值和尺寸。對(duì)一個(gè)固定的電感值,電感尺寸較小時(shí),為了保持相同匝數(shù)必須減小線圈的橫截面積,因此導(dǎo)致DCR 增大;對(duì)于給定的電感尺寸,小電感值通常對(duì)應(yīng)于小的DCR,因?yàn)檩^少的線圈數(shù)減少了線圈長(zhǎng)度,可以使用線徑較粗的導(dǎo)線。
已知DCR 和平均電感電流(具體取決于SMPS 拓?fù)?,電感的電阻損耗(PL(DCR))可以用下式估算:
PL(DCR) = LAVG2× DCR
這里,IL(AVG)是流過(guò)電感的平均直流電流。對(duì)于降壓轉(zhuǎn)換器,平均電感電流是直流輸出電流。盡管DCR的大小直接影響電感電阻的功耗,該功耗與電感電流的平方成正比,因此,減小DCR 是必要的。
另外,還需要注意的是:利用電感的平均電流計(jì)算PL(DCR) (如上述公式)時(shí),得到的結(jié)果略低于實(shí)際損耗,因?yàn)閷?shí)際電感電流為三角波。本文前面介紹的MOSFET 傳導(dǎo)損耗計(jì)算中,利用對(duì)電感電流的波形進(jìn)行積分可以獲得更準(zhǔn)確的結(jié)果。更準(zhǔn)確。當(dāng)然也更復(fù)雜的計(jì)算公式如下:
PL(DCR) = (IP3 - IV3)/3 × DCR
式中IP 和IV 為電感電流波形的峰值和谷值。
磁芯損耗
磁芯損耗并不像傳導(dǎo)損耗那樣容易估算,很難估測(cè)。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。SMPS 中,盡管平均直流電流流過(guò)電感,由于通過(guò)電感的開(kāi)關(guān)電壓的變化產(chǎn)生的紋波電流導(dǎo)致磁芯周期性的磁通變化。
磁滯損耗源于每個(gè)交流周期中磁芯偶極子的重新排列所消耗的功率,可以將其看作磁場(chǎng)極性變化時(shí)偶極子相互摩擦產(chǎn)生的“摩擦”損耗,正比于頻率和磁通密度。
相反,渦流損耗則是磁芯中的時(shí)變磁通量引入的。由法拉第定律可知:交變磁通產(chǎn)生交變電壓。因此,這個(gè)交變電壓會(huì)產(chǎn)生局部電流,在磁芯電阻上產(chǎn)生I2R 損耗。
磁芯材料對(duì)磁芯損耗的影響很大。SMPS 電源中普遍使用的電感是鐵粉磁芯,鐵鎳鉬磁粉芯(MPP)的損耗最低,鐵粉芯成本最低,但磁芯損耗較大。
磁芯損耗可以通過(guò)計(jì)算磁芯磁通密度(B)的最大變化量估算,然后查看電感或鐵芯制造商提供的磁通密度和磁芯損耗(和頻率)圖表。峰值磁通密度可以通過(guò)幾種方式計(jì)算,公式可以在電感數(shù)據(jù)資料中的磁芯損耗曲線中找到。
相應(yīng)地,如果磁芯面積和線圈數(shù)已知,可利用下式估計(jì)峰值磁通:
這里,B 是峰值磁通密度(高斯),L 是線圈電感(亨),ΔI 是電感紋波電流峰峰值(安培),A 是磁芯橫截面積(cm2),N 是線圈匝數(shù)。
隨著互聯(lián)網(wǎng)的普及,可以方便地從網(wǎng)上下載資料、搜索器件信息,一些制造商提供了交互式電感功耗的計(jì)算軟件,幫助設(shè)計(jì)者估計(jì)功耗。使用這些工具能夠快捷、準(zhǔn)確地估計(jì)應(yīng)用電路中的功率損耗。例如,Coilcraft 提供的在線電感磁芯損耗和銅耗計(jì)算公式,簡(jiǎn)單輸入一些數(shù)據(jù)即可得到所選電感的磁芯損耗和銅耗。
電容損耗
與理想的電容模型相反,電容元件的實(shí)際物理特性導(dǎo)致了幾種損耗。電容在SMPS 電路中主要起穩(wěn)壓、濾除輸入/輸出噪聲的作用(圖1),電容的這些損耗降低了開(kāi)關(guān)電源的效率。這些損耗主要表現(xiàn)在三個(gè)方面:等效串聯(lián)電阻損耗、漏電流損耗和電介質(zhì)損耗。
電容的阻性損耗顯而易見(jiàn)。既然電流在每個(gè)開(kāi)關(guān)周期流入、流出電容,電容固有的電阻(RC)將造成一定功耗。漏電流損耗是由于電容絕緣材料的電阻(RL)導(dǎo)致較小電流流過(guò)電容而產(chǎn)生的功率損耗。電介質(zhì)損耗比較復(fù)雜,由于電容兩端施加了交流電壓,電容電場(chǎng)發(fā)生變化,從而使電介質(zhì)分子極化造成功率損耗。
圖9. 電容損耗模型一般簡(jiǎn)化為一個(gè)等效串聯(lián)電阻(ESR)
所有三種損耗都體現(xiàn)在電容的典型損耗模型中(圖9 左邊部分),用電阻代表每項(xiàng)損耗。與電容儲(chǔ)能相關(guān)的每項(xiàng)損耗的功率用功耗系數(shù)(DF)表示,或損耗角正切(δ)。每項(xiàng)損耗的DF 可以通過(guò)由電容阻抗的實(shí)部與虛部比得到,可以將每項(xiàng)損耗分別插入模型中。
為簡(jiǎn)化損耗模型,圖9 中的接觸電阻損耗、漏電流損耗和電介質(zhì)損耗集中等為一個(gè)等效串聯(lián)電阻(ESR)。ESR 定義為電容阻抗中消耗有功功率的部分。
推算電容阻抗模型、計(jì)算ESR (結(jié)果的實(shí)部)時(shí),ESR 是頻率的函數(shù)。這種相關(guān)性可以在下面簡(jiǎn)化的ESR等式中得到證明:
式中,DFR、DFL 和DFD 是接觸電阻、漏電流和電介質(zhì)損耗的功耗系數(shù)。
利用這個(gè)等式,我們可以觀察到隨著信號(hào)頻率的增加,漏電流損耗和電介質(zhì)損耗都有所減小,直到接觸電阻損耗從一個(gè)較高頻點(diǎn)開(kāi)始占主導(dǎo)地位。在該頻點(diǎn)(式中沒(méi)有包括該參數(shù))以上,ESR 因?yàn)楦哳l交流電流的趨膚效應(yīng)趨于增大。
許多電容制造商提供ESR 曲線圖表示ESR 與頻率的關(guān)系。例如,TDK 為其大多數(shù)電容產(chǎn)品提供了ESR 曲線,參考這些與開(kāi)關(guān)頻率對(duì)應(yīng)曲線圖,得到ESR 值。
然而,如果沒(méi)有ESR 曲線圖,可以通過(guò)電容數(shù)據(jù)資料中的DF 規(guī)格粗略估算ESR。DF 是電容的整體DF (包括所有損耗),也可以按照下式估算ESR:
無(wú)論采用哪種方法來(lái)得到ESR 值,直覺(jué)告訴我們,高ESR 會(huì)降低開(kāi)關(guān)電源效率,既然輸入和輸出電容在每個(gè)開(kāi)關(guān)周期通過(guò)ESR 充電、放電。這導(dǎo)致I2× RESR 功率損耗。這個(gè)損耗(PCAP(ESR))可以按照下式計(jì)算:
PCAP(ESR) = ICAP(RMS)2 × RESR
式中,ICAP(RMS)是流經(jīng)電容的交流電流有效值RMS。對(duì)降壓電路的輸出電容,可以采用電感紋波電流的有效值RMS。輸入濾波電容的RMS 電流的計(jì)算比較復(fù)雜,可以按照下式得到一個(gè)合理的估算值:
ICIN(RMS) = IOUT/VIN × [VOUT (VIN - VOUT)]1/2
顯然,為減小電容功率損耗,應(yīng)選擇低ESR 電容,有助于SMPS 電源降低紋波電流。ESR 是產(chǎn)生輸出電壓紋波的主要原因,因此選擇低ESR 的電容不僅僅單純提高效率,還能得到其它好處。
一般來(lái)說(shuō),不同類(lèi)型電介質(zhì)的電容具有不同的ESR 等級(jí)。對(duì)于特定的容量和額定電壓,鋁電解電容和鉭電容就比陶瓷電容具有更高的ESR 值。聚酯和聚丙烯電容的ESR 值介于它們之間,但這些電容尺寸較大,SMPS 中很少使用。
對(duì)于給定類(lèi)型的電容,較大容量、較低的fS 能夠提供較低的ESR。大尺寸電容通常也會(huì)降低ESR,但電解電容會(huì)帶來(lái)較大的等效串聯(lián)電感。陶瓷電容被視為比較好的折中選擇,此外,電容值一定的條件下,較低的電容額定電壓也有助于減小ESR。
及控制、驅(qū)動(dòng)電路的屏蔽等,并要通過(guò)各種方法提高屏蔽效能。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開(kāi)關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車(chē)
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器